留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车动力学性能研究进展

朱海燕 曾庆涛 王宇豪 曾京 邬平波 朱志和 王超文 袁遥 肖乾

朱海燕, 曾庆涛, 王宇豪, 曾京, 邬平波, 朱志和, 王超文, 袁遥, 肖乾. 高速列车动力学性能研究进展[J]. 交通运输工程学报, 2021, 21(3): 57-92. doi: 10.19818/j.cnki.1671-1637.2021.03.004
引用本文: 朱海燕, 曾庆涛, 王宇豪, 曾京, 邬平波, 朱志和, 王超文, 袁遥, 肖乾. 高速列车动力学性能研究进展[J]. 交通运输工程学报, 2021, 21(3): 57-92. doi: 10.19818/j.cnki.1671-1637.2021.03.004
ZHU Hai-yan, ZENG Qing-tao, WANG Yu-hao, ZENG Jing, WU Ping-bo, ZHU Zhi-he, WANG Chao-wen, YUAN Yao, XIAO Qian. Research progress on dynamics performance of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 57-92. doi: 10.19818/j.cnki.1671-1637.2021.03.004
Citation: ZHU Hai-yan, ZENG Qing-tao, WANG Yu-hao, ZENG Jing, WU Ping-bo, ZHU Zhi-he, WANG Chao-wen, YUAN Yao, XIAO Qian. Research progress on dynamics performance of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 57-92. doi: 10.19818/j.cnki.1671-1637.2021.03.004

高速列车动力学性能研究进展

doi: 10.19818/j.cnki.1671-1637.2021.03.004
基金项目: 

国家自然科学基金项目 51665015

江西省自然科学基金项目 20202ACBL204008

江西省教育厅科技项目 GJJ190308

江西省教育厅科技项目 GJJ190333

江西省教育厅科技项目 GJJ200614

牵引动力国家重点实验室开放课题 TPL2007

详细信息
    作者简介:

    朱海燕(1975-),男,江西新干人,华东交通大学副教授,工学博士,从事列车系统动力学和空气动力学研究

  • 中图分类号: U270.11

Research progress on dynamics performance of high-speed train

Funds: 

National Natural Science Foundation of China 51665015

Natural Science Foundation of Jiangxi Province 20202ACBL204008

Science and Technology Project of Jiangxi Provincial Department of Education GJJ190308

Science and Technology Project of Jiangxi Provincial Department of Education GJJ190333

Science and Technology Project of Jiangxi Provincial Department of Education GJJ200614

Open Project of State Key Laboratory of Traction Power TPL2007

More Information
  • 摘要: 为更深入全面了解高速列车系统动力学研究现状,综述了高速列车动力学性能对车辆运行稳定性、安全性和平稳性的影响,总结了列车安全评价方法和动力学试验方法在车辆动力学中的应用,基于轮轨间作用力,分析了轮轨磨耗对列车动力学性能的影响,概括了车-桥耦合模型、弓网系统以及列车空气动力模型在车辆系统动力学中的研究内容。分析结果表明:车轮异常磨耗会导致舒适性下降,合理的车轮镟修能有效降低车轮非圆化和车辆系统关键部件的振动,降低车内振动噪声,增加列车运行稳定性、安全性和平稳性;合适的轮对定位刚度和抗蛇行减振器的刚度和阻尼有利于提高列车蛇行运动稳定性和转向架运动临界速度;钢轨波磨严重时会导致钢轨扣件松动,缩短车辆构架和钢轨的使用寿命;通过合理的钢轨廓型打磨可消除曲线波磨,改善轮轨关系;行波效应对车辆安全性影响很大,与相同激励下的各项参数相比,车速为350 km·h-1、行波速度为300 m·s-1时的脱轨系数、轮重减载率和轮轨横向力都有所降低;横风作用下受电弓气动抬升力增大,影响接触网安全,增大弓头阻尼和弓头刚度可改善弓网受流特性。

     

  • 图  1  脱轨系数

    Figure  1.  Derailment coefficients

    图  2  轮重减载率

    Figure  2.  Rates of wheel load reduction

    图  3  轮轴横向力

    Figure  3.  Lateral axle forces

    图  4  构架横向加速度

    Figure  4.  Lateral accelerations of frame

    图  5  不同踏面下的临界速度

    Figure  5.  Critical speeds under different treads

    图  6  不同影响因素的比重

    Figure  6.  Proportions of different influencing factors

    图  7  不同速度下的脱轨系数

    Figure  7.  Derailment coefficients under different speeds

    图  8  不同速度下的轮重减载率

    Figure  8.  Rates of wheel load reduction under different speeds

    图  9  定常稳态与瞬态中国帽风载模型横向力

    Figure  9.  Lateral forces of steady-state and transient China hat wind load model

    图  10  安全性指标对比

    Figure  10.  Comparison of safety indexes

    图  11  车轮多边形对轮轨垂向力的影响

    Figure  11.  Influences of wheel polygon on wheel-rail vertical forces

    图  12  不同模型与磨耗下的最大轮轨垂向力

    Figure  12.  Maximum wheel-rail vertical forces under different models and wears

    图  13  轮轨相对磨耗增幅

    Figure  13.  Relative wear increases between wheel and rail

    图  14  钢轨波磨

    Figure  14.  Rail corrugation

    图  15  激光超声检测系统

    Figure  15.  Laser ultrasonic inspection system

    图  16  打磨前后对比

    Figure  16.  Comparison before and after grinding

    图  17  摩擦磨损试样机结构

    Figure  17.  Structure of friction and wear sample machine

    图  18  车-桥耦合振动模型

    Figure  18.  Vehicle-bridge coupling vibration model

    图  19  不同风速下车速对安全指标的影响

    Figure  19.  Influences of vehicle speed on safety index under different wind speeds

    图  20  不同地震强度下车速对安全指标的影响

    Figure  20.  Influences of vehicle speed on safety indexes under different earthquake intensities

    图  21  不同攻角下的接触压力

    Figure  21.  Contact pressures under different angles of attack

    图  22  不同工况下的脱轨系数

    Figure  22.  Derailment coefficients under different working conditions

    表  1  实际轨道与试验台轨道参数

    Table  1.   Parameters of actual track and bench orbit

    参数 轨道原型 缩尺试验台
    钢轨单位质量/(kg·m-1) 60.0 22.3
    钢轨截面惯性/10-6m 32.17 3.39
    轨下胶垫刚度/(107N·m-1) 4.57~17.30 1.00
    轨下胶垫阻尼/(103N·s·m-1) 75 7
    轨枕质量/kg 125 12
    道床刚度/(107N·m-1) 11.6~28.1 2.0
    道床阻尼/(103N·s·m-1) 58.8~60.0 6.0
    道床参振质量/kg 500~600 60
    路基刚度/(107N·m-1) 5.5~22.6 4.0
    路基阻尼/(107N·s·m-1) 31.75~100.00 7.0
    下载: 导出CSV
  • [1] 曾京, 关庆华. 铁道车辆运行安全评判的轮对爬轨脱轨准则[J]. 交通运输工程学报, 2007, 7(6): 1-5. doi: 10.3321/j.issn:1671-1637.2007.06.001

    ZENG Jing, GUAN Qing-hua. Wheelset climb derailment criteria for evaluation of railway vehicle running safety[J]. Journal of Traffic and Transportation Engineering, 2007, 7(6): 1-5. (in Chinese) doi: 10.3321/j.issn:1671-1637.2007.06.001
    [2] 孙丽霞, 姚建伟, 成棣, 等. 高速车辆动态脱轨临界状态评判方法[J]. 中国铁道科学, 2020, 41(2): 113-122. doi: 10.3969/j.issn.1001-4632.2020.02.14

    SUN Li-xia, YAO Jian-wei, CHENG Di, et al. Critical state evaluation method for dynamic derailment of high speed vehicle[J]. China Railway Science, 2020, 41(2): 113-122. (in Chinese) doi: 10.3969/j.issn.1001-4632.2020.02.14
    [3] 关庆华. 列车脱轨机理及运行安全性研究[D]. 成都: 西南交通大学, 2011.

    GUAN Qing-hua. Study on the derailment mechanism running safety of trains[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese)
    [4] 孙丽霞, 姚建伟. 高速铁道车辆蛇行脱轨安全性评判方法研究[J]. 中国铁道科学, 2013, 34(5): 82-92. doi: 10.3969/j.issn.1001-4632.2013.05.13

    SUN Li-xia, YAO Jian-wei. Hunting derailment safety evaluation method of high speed railway vehicle[J]. China Railway Science, 2013, 34(5): 82-92. (in Chinese) doi: 10.3969/j.issn.1001-4632.2013.05.13
    [5] 贾璐, 曾京, 刘转华, 等. 五种横向运动稳定性评价方法研究[J]. 机械设计与制造, 2012(10): 219-221. doi: 10.3969/j.issn.1001-3997.2012.10.080

    JIA Lu, ZENG Jing, LIU Zhuan-hua, et al. Study on lateral stability evaluation of high speed trains[J]. Machinery Design and Manufacture, 2012(10): 219-221. (in Chinese) doi: 10.3969/j.issn.1001-3997.2012.10.080
    [6] 安治业. 高速动车组救援连挂研究[J]. 铁道车辆, 2017, 55(2): 31-33. doi: 10.3969/j.issn.1002-7602.2017.02.010

    AN Zhi-ye. Research on coupling in rescue of high speed multiple units[J]. Rolling Stock, 2017, 55(2): 31-33. (in Chinese) doi: 10.3969/j.issn.1002-7602.2017.02.010
    [7] 刘青波. 高速动车组过渡车钩设计有关问题的探讨[J]. 装备制造技术, 2016(12): 129-131. doi: 10.3969/j.issn.1672-545X.2016.12.042

    LIU Qing-bo. Discuss related to the design of EMU transition coupler[J]. Equipment Manufacturing Technology, 2016(12): 129-131. (in Chinese) doi: 10.3969/j.issn.1672-545X.2016.12.042
    [8] 黄丽湘, 张卫华, 马启文, 等. 机车车辆动态模拟和台架试验[J]. 交通运输工程学报, 2007, 7(2): 14-18. doi: 10.3321/j.issn:1671-1637.2007.02.004

    HUANG Li-xiang, ZHANG Wei-hua, MA Qi-wen, et al. Dynamic simulation and plant test for locomotive and rolling stock[J]. Journal of Traffic and Transportation Engineering, 2007, 7(2): 14-18. (in Chinese) doi: 10.3321/j.issn:1671-1637.2007.02.004
    [9] 刘伟渭, 姜瑞金, 刘凤伟, 等. 铁道车辆滚动振动试验台动态曲线模拟方法[J]. 机械工程学报, 2018, 54(16): 127-133. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201816014.htm

    LIU Wei-wei, JIANG Rui-jin, LIU Feng-wei, et al. Method of curve simulation of railway vehicle on roller rig[J]. Journal of Mechanical Engineering, 2018, 54(16): 127-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201816014.htm
    [10] MA Wei-hua, SONG Rong-rong, XU Jun-qi, et al. A coupling vibration test bench and the simulation research of a maglev vehicle[J]. Shock and Vibration, 2015, DOI: 10.1155/2015/586910.
    [11] 王金田, 艾兴乔, 滕万秀, 等. 滚动试验台惯性负载模拟及耦合振动分析[J]. 机车电传动, 2014(4): 79-82. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201404023.htm

    WANG Jin-tian, AI Xing-qiao, TENG Wan-xiu, et al. Inertia loads simulation and coupled vibration analysis of roller test rig[J]. Electric Drive for Locomotives, 2014(4): 79-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201404023.htm
    [12] 袁天辰, 杨俭, 宋瑞刚, 等. 缩尺比例车辆-轨道垂向振动实验系统研究[J]. 振动与冲击, 2016, 35(6): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201606021.htm

    YUAN Tian-chen, YANG Jian, SONG Rui-gang, et al. A reduced-scale experiment system for vehicle-rail vertical vibration[J]. Journal of Vibration and Shock, 2016, 35(6): 115-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201606021.htm
    [13] 汪群生, 曾京, 张传英, 等. 一种新的铁道车辆滚振试验台曲线通过试验方法[J]. 中国机械工程, 2015, 26(24): 3391-3395. doi: 10.3969/j.issn.1004-132X.2015.24.022

    WANG Qun-sheng, ZENG Jing, ZHANG Chuan-ying, et al. A new test method of curve negotiation of railway vehicle on roller rig[J]. China Mechanical Engineering, 2015, 26(24): 3391-3395. (in Chinese) doi: 10.3969/j.issn.1004-132X.2015.24.022
    [14] 张富兵, 邬平波, 吴兴文, 等. 高速列车车轮多边形对轴箱的影响分析[J]. 振动、测试与诊断, 2018, 38(5): 1063-1068, 1088. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201805030.htm

    ZHANG Fu-bing, WU Ping-bo, WU Xing-wen, et al. Effects of wheel polygonalization on axle box for high speed train[J]. Journal of Vibration, Measurement and Diagnosis, 2018, 38(5): 1063-1068, 1088. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201805030.htm
    [15] 林新海, 赵永强, 马玉强, 等. 不同工况下动车组齿轮箱振动特性试验研究[J]. 机械传动, 2019, 43(11): 139-142, 155. https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201911025.htm

    LIN Xin-hai, ZHAO Yong-qiang, MA Yu-qiang, et al. Experimental study on vibration characteristic of gearbox of high-speed train under different working condition[J]. Journal of Mechanical Transmission, 2019, 43(11): 139-142, 155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201911025.htm
    [16] ZHANG Lan, SU Jian, CHEN Qiu-yu, et al. Reproduction method of the relative position and posture of vehicle ends on the test bench[J]. Advances in Mechanical Engineering, 2016, 8(9): 1-12. http://www.researchgate.net/publication/308709284_Reproduction_method_of_the_relative_position_and_posture_of_vehicle_ends_on_the_test_bench
    [17] 徐凤. 基于试验台架的高速列车轨道不平顺复现方法研究[D]. 长春: 吉林大学, 2015.

    XU Feng. Research on realization method of high-speed train track irregularity based on test bench[D]. Changchun: Jilin University, 2015. (in Chinese)
    [18] WU Xing-wen, CHI Mao-ru, GAO Hao. The study of post-derailment dynamic behavior of railway vehicle based on running tests[J]. Engineering Failure Analysis, 2014(44): 382-399. http://www.sciencedirect.com/science/article/pii/S1350630714001800
    [19] 李晓峰, 李国栋, 宋春元, 等. 高速动车组车轮磨耗线路试验研究[J]. 中国铁路, 2019(4): 65-72. doi: 10.3969/j.issn.1007-9971.2019.04.010

    LI Xiao-feng, LI Guo-dong, SONG Chun-yuan, et al. Wheel wear test on lines for high speed EMU trains[J]. China Railway, 2019(4): 65-72. (in Chinese) doi: 10.3969/j.issn.1007-9971.2019.04.010
    [20] 詹凌峰, 尹庆玲, 马春文. CRH1型动车组车轮偏磨与动力学性能分析[J]. 内燃机与配件, 2020(6): 49-51. doi: 10.3969/j.issn.1674-957X.2020.06.023

    ZHAN Ling-feng, YIN Qing-ling, MA Chun-wen. Analysis of wheel eccentric wear and dynamic performance of CRH1 EMU[J]. Internal Combustion Engine and Parts, 2020(6): 49-51. (in Chinese) doi: 10.3969/j.issn.1674-957X.2020.06.023
    [21] 石怀龙, 屈升, 张大福, 等. 高速动车组线路动力学响应特性研究[J]. 铁道学报, 2019, 41(10): 30-37. doi: 10.3969/j.issn.1001-8360.2019.10.005

    SHI Huai-long, QU Sheng, ZHANG Da-fu, et al. Dynamic response performance analysis of high-speed trains on track[J]. Journal of the China Railway Society, 2019, 41(10): 30-37. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.10.005
    [22] 董孝卿, 许自强, 史峰宝, 等. 构架报警动车组运行稳定性的线路试验研究[J]. 铁道机车车辆, 2017, 37(5): 1-5, 49. doi: 10.3969/j.issn.1008-7842.2017.05.01

    DONG Xiao-qing, XU Zi-qiang, SHI Feng-bao, et al. The field test research for running stability of EMU in bogie alarm[J]. Railway Locomotive and Car, 2017, 37(5): 1-5, 49. (in Chinese) doi: 10.3969/j.issn.1008-7842.2017.05.01
    [23] 王培培. 基于跟踪试验高速列车转向架振动特性演变规律研究[D]. 成都: 西南交通大学, 2016.

    WANG Pei-pei. Research on evolution law of bogie vibration characteristics of high-speed trains based on tracking test[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
    [24] 韩光旭, 宋春元, 李国栋, 等. 高速列车车轮非圆化与振动噪声关系跟踪试验研究[J]. 城市轨道交通研究, 2017, 20(2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201702004.htm

    HAN Guang-xu, SONG Chun-yuan, LI Guo-dong, et al. Tracing test of the relationship between high-speed train wheel OOR and vibration noise[J]. Urban Mass Transit, 2017, 20(2): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201702004.htm
    [25] 马洪光. 高速动车组运行品质演变特性跟踪研究[J]. 铁道车辆, 2015, 53(7): 4-5, 42. doi: 10.3969/j.issn.1002-7602.2015.07.002

    MA Hong-guang. Tracking study on evolution features of the operation quality of high-speed multiple units[J]. Rolling Stock, 2015, 53(7): 4-5, 42. (in Chinese) doi: 10.3969/j.issn.1002-7602.2015.07.002
    [26] 王文静, 王燕, 孙守光, 等. 高速列车转向架载荷谱长期跟踪试验研究[J]. 西南交通大学学报, 2015, 50(1): 84-89. doi: 10.3969/j.issn.0258-2724.2015.01.013

    WANG Wen-jing, WANG Yan, SUN Shou-guang, et al. Long-term load spectrum test of high-speed train bogie[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 84-89. (in Chinese) doi: 10.3969/j.issn.0258-2724.2015.01.013
    [27] 黄鼎. CRH380BL高速动车组转向架结构强度跟踪试验研究[D]. 北京: 北京交通大学, 2012.

    HUANG Ding. Research on the structural strength of bogie for CRH380BL EMU based on tracking test[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese)
    [28] FEDERICO C, 韩运动. 利用列车比例模型风洞试验研究基础设施对列车气动力的影响[J]. 国外铁道车辆, 2011, 48(6): 33-40. doi: 10.3969/j.issn.1002-7610.2011.06.008

    FEDERICO C, HAN Yun-dong. Investigating on the effect of infrastructure scenario on aerodynamic force of train with wind tunnel tests on train scale models[J]. Foreign Rolling Stock, 2011, 48(6): 33-40. (in Chinese) doi: 10.3969/j.issn.1002-7610.2011.06.008
    [29] BOCCIOLONE M, FEDERICO C, CORRADI R, et al. Crosswind action on rail vehicles: wind tunnel experimental analyses[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008(5): 584-610. http://www.sciencedirect.com/science/article/pii/S0167610508000202
    [30] 刘涛, 段大力, 余以正. 风洞试验地面效应对列车流场结构及气动力的影响[J]. 大连交通大学学报, 2020, 41(4): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD202004013.htm

    LIU Tao, DUAN Da-li, YU Yi-zheng. Effect of car aerodynamic drag force and bogie accumulated snow and freeze on bogie apron[J]. Journal of Dalian Jiaotong University, 2020, 41(4): 57-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD202004013.htm
    [31] 张盈. 比例车体试验台的模态参数识别研究[D]. 成都: 西南交通大学, 2014.

    ZHANG Ying. Research on the identification of modal parameters of proportional carbody test rig[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese)
    [32] 谭仕发, 缪炳荣, 李伟. 高速列车比例车体谐响应分析及测点布置优化研究[J]. 铁道机车车辆, 2015, 35(5): 5-8, 27. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201505004.htm

    TAN Shi-fa, MIAO Bing-rong, LI Wei. Harmonic response analysis of the scaled car-body of high speed train and configuration optimization of measuring points[J]. Railway Locomotive and Car, 2015, 35(5): 5-8, 27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201505004.htm
    [33] 郭训, 郑树彬, 柴晓冬, 等. 基于柔性轮对的轨道车辆动力学仿真分析[J]. 测控技术, 2018, 37(8): 150-153. https://www.cnki.com.cn/Article/CJFDTOTAL-IKJS201808037.htm

    GUO Xun, ZHENG Shu-bin, CHAI Xiao-dong, et al. Simulation analysis of railway vehicle dynamic performance based on flexible wheelset[J]. Measurement and Control Technology, 2018, 37(8): 150-153. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-IKJS201808037.htm
    [34] 陈新华, 黄志辉, 卜继玲. 基于ANSYS与SIMPACK联合仿真的柔性轮对动力学仿真分析[J]. 机车电传动, 2014(2): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201402010.htm

    CHEN Xin-hua, HUANG Zhi-hui, BU Ji-ling. Dynamics simulation analysis of flexible wheelset based on ANSYS and SIMPACK[J]. Electric Drive for Locomotives, 2014(2): 41-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201402010.htm
    [35] 万鹏. 考虑轮对弹性时车辆系统动力学建模与仿真分析[D]. 成都: 西南交通大学, 2008.

    WAN Peng. Modelling and simulation analysis of vehicle system dynamics in consideration of the elasticity of wheelsets[D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese)
    [36] 李国栋, 曾京, 李晓峰, 等. 基于变轨距高速动车组适应性的动力学性能分析[J]. 机车电传动, 2019(5): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201905005.htm

    LI Guo-dong, ZENG Jing, LI Xiao-feng, et al. Dynamic performance analysis of adaptability of gauge changeable high-speed EMUs[J]. Electric Drive for Locomotives, 2019(5): 20-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201905005.htm
    [37] 叶学艳, 赵春发, 翟婉明. 低速磁浮车辆动力学建模与导向机构仿真分析[J]. 交通运输工程学报, 2007, 7(3): 6-10. doi: 10.3321/j.issn:1671-1637.2007.03.002

    YE Xue-yan, ZHAO Chun-fa, ZHAI Wan-ming. Dynamics modeling of low-speed maglev vehicle system and simulation of its guidance mechanisms[J]. Journal of Traffic and Transportation Engineering, 2007, 7(3): 6-10. (in Chinese) doi: 10.3321/j.issn:1671-1637.2007.03.002
    [38] 朱海燕, 尹必超, 胡华涛, 等. 谐波转矩对高速列车齿轮箱体与牵引电机振动特性的影响[J]. 交通运输工程学报, 2019, 19(6): 65-76. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201906009.htm

    ZHU Hai-yan, YIN Bi-chao, HU Hua-tao, et al. Effects of harmonic torque on vibration characteristics of gear box housing and traction motor of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 65-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201906009.htm
    [39] 干锋, 戴焕云, 高浩, 等. 铁道车辆不同踏面等效锥度和轮轨接触关系计算[J]. 铁道学报, 2013, 35(9): 19-24. doi: 10.3969/j.issn.1001-8360.2013.09.004

    GAN Feng, DAI Huan-yun, GAO Hao, et al. Calculation of equivalent conicity and wheel-rail contact relationship of different railway vehicle treads[J]. Journal of the China Railway Society, 2013, 35(9): 19-24. (in Chinese) doi: 10.3969/j.issn.1001-8360.2013.09.004
    [40] 杨亮亮, 罗世辉, 傅茂海, 等. 抗蛇行减振器安装刚度对弹性构架车辆动力学性能影响[J]. 机车电传动, 2012(6): 15-18, 22. doi: 10.3969/j.issn.1000-128X.2012.06.005

    YANG Liang-liang, LUO Shi-hui, FU Mao-hai, et al. Influence of anti-yaw damper mounted stiffness on vehicle dynamics performance based on flexible frame[J]. Electric Drive for Locomotives, 2012(6): 15-18, 22. (in Chinese) doi: 10.3969/j.issn.1000-128X.2012.06.005
    [41] 王开云, 孟宏, 翟婉明. "天梭"号电力机车参数优化及动力性能仿真分析[J]. 机车电传动, 2003(6): 5-8, 12. doi: 10.3969/j.issn.1000-128X.2003.06.002

    WANG Kai-yun, MENG Hong, ZHAI Wan-ming. Parameters optimization of "Tiansuo" electric locomotive and simulation and analysis of its dynamic performance[J]. Electric Drive for Locomotives, 2003(6): 5-8, 12. (in Chinese) doi: 10.3969/j.issn.1000-128X.2003.06.002
    [42] 王开云, 翟婉明, 蔡成标. 轮轨结构参数对列车运动稳定性的影响[J]. 中国铁道科学, 2003, 24(1): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200301009.htm

    WANG Kai-yun, ZHAI Wan-ming, CAI Cheng-biao. Effect of wheel rail structure parameter on stability of train movement[J]. China Railway Science, 2003, 24(1): 45-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200301009.htm
    [43] 罗赟. 机车驱动装置悬挂结构及参数的研究[D]. 成都: 西南交通大学, 2005.

    LUO Yun. Study on suspension constructs and parameters of driving equipment in locomotives[D]. Chengdu: Southwest Jiaotong University, 2005. (in Chinese)
    [44] 翟建平, 张继业, 李田. 横风下高速列车动力学参数的多目标优化[J]. 交通运输工程学报, 2020, 20(3): 80-88. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003011.htm

    ZHAI Jian-ping, ZHANG Ji-ye, LI Tian. Multi-objective optimization for dynamics parameters of high-speed trains under side wind[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 80-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202003011.htm
    [45] 郝建华, 曾京, 邬平波. 铁路车辆垂向减振与悬挂系统参数优化[J]. 交通运输工程学报, 2005, 5(4): 10-14. doi: 10.3321/j.issn:1671-1637.2005.04.003

    HAO Jian-hua, ZENG Jing, WU Ping-bo. Vertical vibration isolation and suspension parameter optimization of railway vehicle[J]. Journal of Traffic and Transportation Engineering, 2005, 5(4): 10-14. (in Chinese) doi: 10.3321/j.issn:1671-1637.2005.04.003
    [46] 李响, 任尊松, 徐宁. 基于转向架悬挂参数与踏面锥度优化的高速车辆动力学性能分析[J]. 铁道学报, 2018, 40(3): 39-44. doi: 10.3969/j.issn.1001-8360.2018.03.006

    LI Xiang, REN Zun-song, XU Ning. Dynamic performance analysis of high-speed vehicle based on optimization of bogie suspension parameters and tread conicity[J]. Journal of the China Railway Society, 2018, 40(3): 39-44. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.03.006
    [47] 徐坤, 曾京, 黄彩虹, 等. 牵引电机架悬参数对动车转向架稳定性的影响[J]. 铁道学报, 2019, 41(8): 32-38. doi: 10.3969/j.issn.1001-8360.2019.08.004

    XU Kun, ZENG Jing, HUANG Cai-hong, et al. Influence of suspension parameters of traction motor on stability of high speed train bogie[J]. Journal of the China Railway Society, 2019, 41(8): 32-38. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.08.004
    [48] 吴会超, 邬平波, 吴娜, 等. 车下设备悬挂参数与车体结构之间匹配关系研究[J]. 振动与冲击, 2013, 32(3): 124-128. doi: 10.3969/j.issn.1000-3835.2013.03.025

    WU Hui-chao, WU Ping-bo, WU Na, et al. Matching relations between equipment suspension parameters and a carbody structure[J]. Journal of Vibration and Shock, 2013, 32(3): 124-128. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.03.025
    [49] 孙善超, 王成国, 李海涛, 等. 轮/轨接触几何参数对高速客车动力学性能的影响[J]. 中国铁道科学, 2006, 27(5): 93-98. doi: 10.3321/j.issn:1001-4632.2006.05.017

    SUN Shan-chao, WANG Cheng-guo, LI Hai-tao, et al. Analysis of wheel/rail contact geometric parameters effect on the dynamic behavior of high-speed passenger car[J]. China Railway Science, 2006, 27(5): 93-98. (in Chinese) doi: 10.3321/j.issn:1001-4632.2006.05.017
    [50] 翟婉明. 车辆-轨道垂向系统的统一模型及其耦合动力学原理[J]. 铁道学报, 1992, 14(3): 10-21. doi: 10.3321/j.issn:1001-8360.1992.03.002

    ZHAI Wan-ming. The vertical modle of vehicle-track system and its couple dynamics[J]. Journal of the China Railway Society, 1992, 14(3): 10-21. (in Chinese) doi: 10.3321/j.issn:1001-8360.1992.03.002
    [51] 孔程程, 张静, 黄兵. 基于Simulink的列车垂向振动仿真分析[J]. 河南科技, 2020(14): 8-10. doi: 10.3969/j.issn.1003-5168.2020.14.012

    KONG Cheng-cheng, ZHANG Jing, HUANG Bing. Simulation analysis of train vertical vibration based on Simulink[J]. Henan Science and Technology, 2020(14): 8-10. (in Chinese) doi: 10.3969/j.issn.1003-5168.2020.14.012
    [52] 王福天, 朱昶基, 陈健凡. 客车转向架横向振动的理论计算和试验分析[J]. 铁道学报, 1981, 3(1): 14-26. doi: 10.3321/j.issn:1001-8360.1981.01.002

    WANG Fu-tian, ZHU Chang-ji, CHEN Jian-fan. The theoretical calculations and experimental analyses on lateral oscillation of coach bogies[J]. Journal of the China Railway Society, 1981, 3(1): 14-26. (in Chinese) doi: 10.3321/j.issn:1001-8360.1981.01.002
    [53] 刘宏友, 曾京. 列车系统蛇行运动稳定性研究[J]. 铁道学报, 2004, 26(5): 41-45. doi: 10.3321/j.issn:1001-8360.2004.05.008

    LIU Hong-you, ZENG Jing. Research on the hunting stability of the train system[J]. Journal of the China Railway Society, 2004, 26(5): 41-45. (in Chinese) doi: 10.3321/j.issn:1001-8360.2004.05.008
    [54] 王开云, 翟婉明, 刘建新, 等. 线路不平顺波长对提速列车横向舒适性影响[J]. 交通运输工程报, 2007, 7(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200701001.htm

    WANG Kai-yun, ZHAI Wan-ming, LIU Jian-xin, et al. Effect of rail irregularity wavelength on lateral running comfort of speed-raised train[J]. Journal of Traffic and Transportation Engineering, 2007, 7(1): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200701001.htm
    [55] 沈钢, 周劲松, 任利惠. 列车动力学模型的研究[J]. 铁道机车车辆, 2004, 24(增1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC2004S1000.htm

    SHEN Gang, ZHOU Jin-song, REN Li-hui. Study on modeling method for train dynamics[J]. Railway Locomotive and Car, 2004, 24(S1): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC2004S1000.htm
    [56] 万鹏, 翟婉明, 王开云. 考虑轮对弹性时车辆运动稳定性分析[J]. 铁道车辆, 2008, 46(6): 8-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200806002.htm

    WAN Peng, ZHAI Wan-ming, WANG Kai-yun. Analysis of running stability of vehicles with the consideration of wheelset elasticity[J]. Rolling Stock, 2008, 46(6): 8-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200806002.htm
    [57] 罗雁云, 谭大正, 施董燕. 基于刚柔结合建模技术的道岔区轮轨动力学仿真分析[J]. 城市轨道交通研究, 2010(2): 18-22. doi: 10.3969/j.issn.1007-869X.2010.02.006

    LUO Yan-yun, TAN Da-zheng, SHI Dong-yan. Dynamic analysis of wheel/rail system for turnout based on rigid-flexible hybrid modeling[J]. Urban Mass Transit, 2010(2): 18-22. (in Chinese) doi: 10.3969/j.issn.1007-869X.2010.02.006
    [58] 黄安宁, 易智民, 张安全. 基于SIMPACK的轨道车辆动态性能仿真分析[J]. 机械与电子, 2013(3): 77-80. doi: 10.3969/j.issn.1001-2257.2013.03.021

    HUANG An-ning, YI Zhi-min, ZHANG An-quan. Simulation research on dynamic performance of a certain type railway vehicle based on SIMPACK[J]. Machinery and Electronics, 2013(3): 77-80. (in Chinese) doi: 10.3969/j.issn.1001-2257.2013.03.021
    [59] CHENG Jing-yu. Study on rigid-flexible coupling modeling of vehicle and vibration reduction of suspended equipments based on model updating[J]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [60] 凌亮. 高速列车-轨道三维刚柔耦合动力学研究[D]. 成都: 西南交通大学, 2015.

    LING Liang. 3D rigid-flexible coupling dynamics of high-speed train/track system[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese)
    [61] 吴兴文, 池茂儒, 朱旻昊, 等. 空气弹簧模型对铁道车辆动力学性能的影响[J]. 交通运输工程学报, 2013, 13(2): 54-59. doi: 10.3969/j.issn.1671-1637.2013.02.008

    WU Xing-wen, CHI Mao-ru, ZHU Min-hao, et al. Influence of air spring models on dynamics performance of railway vehicle[J]. Journal of Traffic and Transportation Engineering, 2013, 13(2): 54-59. (in Chinese) doi: 10.3969/j.issn.1671-1637.2013.02.008
    [62] 林森. 高速列车综合舒适度评价标准研究及测试模型设计[D]. 成都: 西南交通大学, 2014.

    LIN Sen. Research of evaluation method and model design on synthesis comfort of high-speed train[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese)
    [63] 林森, 林建辉, 刘璐. 一种客观判定高速列车综合舒适度的方法[J]. 铁道机车车辆, 2013, 33(6): 5-9, 72. doi: 10.3969/j.issn.1008-7842.2013.06.02

    LIN Sen, LIN Jian-hui, LIU Lu. An objective method to evaluate the synthesis comfort of high-speed train[J]. Railway Locomotive and Car, 2013, 33(6): 5-9, 72. (in Chinese) doi: 10.3969/j.issn.1008-7842.2013.06.02
    [64] 吴杨俊, 孙维光, 陈杰, 等. 设备与座椅悬挂参数对列车乘坐舒适性影响分析[J]. 铁道科学与工程学报, 2020, 17(5): 1263-1270. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202005025.htm

    WU Yang-jun, SUN Wei-guang, CHEN Jie, et al. Impact analysis of suspended equipment and seats on train ride comfort[J]. Journal of Railway Science and Engineering, 2020, 17(5): 1263-1270. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202005025.htm
    [65] 张丙辰, 过伟敏, 王艳群, 等. 面向列车内装造型设计的旅客视觉意象研究[J]. 机械工程学报, 2016, 52(4): 199-205. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201604028.htm

    ZHANG Bing-chen, GUO Wei-min, WANG Yan-qun, et al. Train's interior form design oriented visual image of passenger research[J]. Journal of Mechanical Engineering, 2016, 52(4): 199-205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201604028.htm
    [66] 饶鹏飞. 中国高速列车室内照明环境设计研究[D]. 成都: 西南交通大学, 2012.

    RAO Peng-fei. Study on interior lighting environment design of China high-speed train[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)
    [67] 姚应峰. 横风作用下200 km/h动车组安全性研究[D]. 成都: 西南交通大学, 2008.

    YAO Ying-feng. Study on security of 200 km/h high speed EMU severing in crosswind[D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese)
    [68] 袁世平. 强风作用下大跨度连续钢桁拱桥的车-桥耦合振动分析[D]. 长沙: 中南大学, 2008.

    YUAN Shi-ping. Vehicle-bridge coupled vibration analysis of long-span continuous steel truss arch bridge under strong wind[D]. Changsha: Central South University, 2008. (in Chinese)
    [69] 于梦阁. 高速列车风致安全研究[D]. 成都: 西南交通大学, 2010.

    YU Meng-ge. Study on the wind-induced security of high-speed trains[D]. Chengdu: Southwest Jiaotong University, 2010. (in Chinese)
    [70] 郗艳红, 毛军副, 张念. 强风中高速列车安全性研究[J]. 中国安全科学学报, 2010, 20(5): 39-45. doi: 10.3969/j.issn.1003-3033.2010.05.007

    XI Yan-hong, MAO Jun-fu, ZHANG Nian. Study on the safety of high-speed train in strong wind[J]. China Safety Science Journal, 2010, 20(5): 39-45. (in Chinese) doi: 10.3969/j.issn.1003-3033.2010.05.007
    [71] 郗艳红. 横风作用下的高速列车气动特性及运行安全性研究[D]. 北京: 北京交通大学, 2012.

    XI Yan-hong. Research on aerodynamic characteristics and running safety of high-speed train under cross winds[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese)
    [72] 王康. 定常稳态风载荷下的高速列车运行安全性研究[J]. 内蒙古工业大学报, 2018, 37(5): 395-400. https://www.cnki.com.cn/Article/CJFDTOTAL-NMGD201805013.htm

    WANG Kang. Study on safety of high speed train operation under constant steady wind load[J]. Journal of Inner Mongolia University of Technology, 2018, 37(5): 395-400. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NMGD201805013.htm
    [73] 张茉颜, 肖宏. 强横风与轨道不平顺耦合作用对高速列车运行安全性影响分析[J]. 铁道标准设计, 2018, 62(12): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201812004.htm

    ZHANG Mo-yan, XIAO Hong. The influence of strong cross wind and track irregularity coupling on high-speed train operation safety[J]. Railway Standard Design, 2018, 62(12): 11-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201812004.htm
    [74] 费天翔. 侧风作用下列车行驶的安全性研究[D]. 北京: 北京交通大学, 2014.

    FEI Tian-xiang. Study on the train's operational safety under cross wind actions[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese)
    [75] 李德仓. 侧风作用下高速列车安全运行控制策略研究[D]. 兰州: 兰州交通大学, 2019.

    LI De-cang. Research on control strategy for high-speed train safety running under crosswind condition[D]. Lanzhou: Lanzhou Jiaotong University, 2019. (in Chinese)
    [76] 彭祎恺, 罗仁, 胡俊波, 等. 不同侧风模型下的高速列车安全性研究[J]. 铁道车辆, 2015, 53(9): 5-10. doi: 10.3969/j.issn.1002-7602.2015.09.002

    PENG Yi-kai, LUO Ren, HU Jun-bo, et al. Research on safety of high speed trains under different cross wind models[D]. Rolling Stock, 2015, 53(9): 5-10. (in Chinese) doi: 10.3969/j.issn.1002-7602.2015.09.002
    [77] 寇丽君, 杜礼明. 大风对高速列车安全性的影响研究[J]. 农业装备与车辆工程, 2020, 58(4): 87-91. doi: 10.3969/j.issn.1673-3142.2020.04.020

    KOU Li-jun, DU Li-ming. Study on influence of high wind on high-speed train safety[J]. Agricultural Equipment and Vehicle Engineering, 2020, 58(4): 87-91. (in Chinese) doi: 10.3969/j.issn.1673-3142.2020.04.020
    [78] MONTENEGRO P A, CALÇADA R, CARVALHO H, et al. Stability of a train running over the Volga River High-Speed Railway Bridge during crosswinds[J]. Structure and Infrastructure Engineering, 2020, 16(8): 1121-1137. doi: 10.1080/15732479.2019.1684956
    [79] 杜宪亭. 强地震作用下大跨度桥梁空间动力效应及列车运行安全研究[D]. 北京: 北京交通大学, 2011.

    DU Xian-ting. Research on spatial dynamic effect of long-span bridge and running safety of during strong earthquakes[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese)
    [80] 可心萌. 地震作用下车辆脱轨安全性研究[D]. 成都: 西南交通大学, 2014.

    KE Xin-meng. Study on vehicle derailment safety under seismic action[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese)
    [81] 吴兴文. 地震作用下车辆脱轨安全性研究[D]. 成都: 西南交通大学, 2016.

    WU Xing-wen. Running safety assessment of railway vehicles under the earthquake excitations[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
    [82] WU Xing-wen, CHI Mao-ru, GAO Hao. Experimental and numerical analysis of the polygonal wear of high-speed trains[J]. Engineering Failure Analysis, 2016(64): 97-110. http://www.sciencedirect.com/science/article/pii/S0043164819301267
    [83] 张树强. 震后轨道变形对列车行车安全性影响研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2018.

    ZHANG Shu-qiang. Influence of track deformation on running safety of high-speed train after seismic[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2018. (in Chinese)
    [84] 李娆饶. 高速列车地震安全性及平稳性分析[D]. 哈尔滨: 中国地震局工程力学研究所, 2019.

    LI Rao-rao. Analysis of seismic safety and stationarity of high speed trains[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2019. (in Chinese)
    [85] 李明菲. 地震作用对路基上列车运行安全性影响研究[D]. 北京: 北京交通大学, 2014.

    LI Ming-fei. Research on the impact of the earthquake on the safety of running train on embankment[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese)
    [86] 贺芊. 轨道不平顺对高速列车地震安全性影响研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2015.

    HE Qian. Influence of track irregularity on running safety of high-speed train under seismic action[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2015. (in Chinese)
    [87] 李雨泽. 地震作用下铁路车桥耦合系统安全性分析[D]. 兰州: 兰州交通大学, 2018.

    LI Yu-ze. Study on train-bridge coupling system under seismic effect[D]. Lanzhou: Lanzhou Jiaotong University, 2018. (in Chinese)
    [88] 梁升建. 基于高速移动列车-桥梁耦合模型的列车地震安全性分析[D]. 哈尔滨: 中国地震局工程力学研究所, 2016.

    LIANG Sheng-jian. Seismic safety analysis of train based on high-speed operating train-bridge coupling model[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2016. (in Chinese)
    [89] 刘智. 高速铁路车-桥耦合体系地震响应分析及报警阈值研究[J]. 国际地震动态, 2016(4): 39-40. doi: 10.3969/j.issn.0235-4975.2016.04.010

    LIU Zhi. Study on seismic response of train-bridge coupling system and earthquake alarm threshold[J]. Recent Developments in World Seismology, 2016(4): 39-40. (in Chinese) doi: 10.3969/j.issn.0235-4975.2016.04.010
    [90] 雷成, 肖守讷, 罗世辉, 等. 轨道车辆耐碰撞性研究进展[J]. 铁道学报, 2013, 35(1): 31-40. doi: 10.3969/j.issn.1001-8360.2013.01.005

    LEI Cheng, XIAO Shou-ne, LUO Shi-hui, et al. State of the art research development of vehicles crashworthiness[J]. Journal of the China Railway Society, 2013, 35(1): 31-40. (in Chinese) doi: 10.3969/j.issn.1001-8360.2013.01.005
    [91] 雷成. 基于多体系统动力学的机车车辆耐撞性研究[D]. 成都: 西南交通大学, 2014.

    LEI Cheng. Research on crashworthiness of locomotives and vehicles based on multi-body system dynamics[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese)
    [92] 吴东阁. 高速列车碰撞条件下的乘客安全性分析[D]. 成都: 西南交通大学, 2015.

    WU Dong-ge. Research on crashworthy passenger safety for high-speed trains[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese)
    [93] 早势刚, 彭惠民. 列车碰撞安全性研究[J]. 国外铁道机车与动车, 2017(2): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GWMJ201702013.htm

    ZAO Shi-gang, PENG Hui-min. Research on the safety of train collision[J]. Foreign Railway Locomotive and Motor Car, 2017(2): 44-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWMJ201702013.htm
    [94] 王忆佳. 车轮踏面伤损对高速列车动力学行为的影响[D]. 成都: 西南交通大学, 2014.

    WANG Yi-jia. Effect of wheel tread damage on dynamic behavior of high speed trains[J]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese)
    [95] WU Xing-wen, RAKHEJA S, CAI Wu-bin, et al. A study of formation of high order wheel polygonalization[J]. Wear, 2019, 424/425: 1-14. doi: 10.1016/j.wear.2019.01.099
    [96] WU Xing-wen, CHI Mao-ru, GAO Hao. Damage tolerances of a railway axle in the presence of wheel polygonalizations[J]. Engineering Failure Analysis, 2016, 66: 44-59. doi: 10.1016/j.engfailanal.2016.04.009
    [97] 王伟, 曾京, 罗仁. 列车车轮不圆顺的研究现状[J]. 国外铁道车辆, 2009, 46(1): 39-43. doi: 10.3969/j.issn.1002-7610.2009.01.011

    WANG Wei, ZENG Jing, LUO Ren. Present conditions of survey of out-of-round railway wheels[J]. Foreign Rolling Stock, 2009, 46(1): 39-43. (in Chinese) doi: 10.3969/j.issn.1002-7610.2009.01.011
    [98] 涂英辉. 高速铁路轮轨动力作用规律分析[J]. 中国铁路, 2019(7): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201907005.htm

    TU Ying-hui. Analysis on wheel-rail dynamic interaction of high speed railway[J]. China Railway, 2019(7): 22-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201907005.htm
    [99] 宋志坤, 侯银庆, 胡晓依, 等. 柔性轮轨下轮轨波磨综合作用的振动特性研究[J]. 铁道学报, 2018, 40(11): 33-40. doi: 10.3969/j.issn.1001-8360.2018.11.005

    SONG Zhi-kun, HOU Yin-qing, HU Xiao-yi, et al. Research on vibration characteristics of wheel-rail corrugation under flexible wheel and rail[J]. Journal of the China Railway Society, 2018, 40(11): 33-40. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.11.005
    [100] 赵新利, 吴越, 郭涛, 等. 车轮多边形磨耗统计规律及关键影响因素分析[J]. 振动、测试与诊断, 2020, 40(1): 48-53, 202. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202001008.htm

    ZHAO Xin-li, WU Yue, GUO Tao, et al. The statistical research and induction factor of polygonal wear of high-speed train wheels[J]. Journal of Vibration, Measurement and Diagnosis, 2020, 40(1): 48-53, 202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202001008.htm
    [101] 吴越, 韩健, 左齐宇, 等. 钢轨波磨对高速列车车轮多边形磨耗产生与发展的影响[J]. 机械工程学报, 2020, 56(17): 198-208. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202017021.htm

    WU Yue, HAN Jian, ZUO Qi-yu, et al. Effect of rail corrugation on initiation and development of polygonal wear on high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(17): 198-208. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202017021.htm
    [102] 金学松, 吴越, 梁树林, 等. 高速列车车轮多边形磨耗、机理、影响和对策分析[J]. 机械工程学报, 2020, 56(16): 118-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202016014.htm

    JIN Xue-song, WU Yue, LIANG Shu-lin, et al. Characteristics, mechanism, influences and countermeasures of polygonal wear of high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(16): 118-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202016014.htm
    [103] 朱海燕, 胡华涛, 尹必超, 等. 轨道车辆车轮多边形研究进展[J]. 交通运输工程学报, 2020, 20(1): 102-119. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001011.htm

    ZHU Hai-yan, HU Hua-tao, YIN Bi-chao, et al. Research progress on wheel polygons of rail vehicles[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 102-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001011.htm
    [104] CHI Zhe-xiang, LIN Jing, CHEN Ruo-ran, et al. Data-driven approach to study the polygonization of high-speed railway train wheel-sets using field data of China's HSR train[J]. Measurement, 2020, 149: 1-12. http://www.sciencedirect.com/science/article/pii/S0263224119308887
    [105] 杨朝阳. 车轮踏面磨耗及轮径差对高速动车组动力学性能影响研究[D]. 北京: 北京交通大学, 2009.

    YANG Chao-yang. Study on the influence of wheel tread worn and roll radii difference on EMU system dynamics[D]. Beijing: Beijing Jiaotong University, 2009. (in Chinese)
    [106] JIANG Xiao-yu, LI Xiao-tao, LI Xu, et al. Rail fatigue crack propagation in high-speed wheel/rail rolling contact[J]. Journal of Modern Transportation, 2017, 25(3): 178-184. doi: 10.1007/s40534-017-0138-6
    [107] 王文健, 郭火明, 刘启跃, 等. 水油介质下研磨子对轮轨增黏与损伤影响[J]. 机械工程学报, 2015, 51(5): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201505010.htm

    WANG Wen-jian, GUO Huo-ming, LIU Qi-yue, et al. Effect of abrasive block on improving adhesion and damage of wheel/rail under the water and oil conditions[J]. Journal of Mechanical Engineering, 2015, 51(5): 71-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201505010.htm
    [108] 查浩, 任尊松, 徐宁. 车轮扁疤激起的轴箱轴承冲击特性[J]. 交通运输工程学报, 2020, 20(4): 165-173. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202004017.htm

    ZHA Hao, REN Zun-song, XU Ning. Impact characteristics of axle box bearing due to wheel flats[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 165-173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202004017.htm
    [109] 黄照伟. 车轮磨耗及其对车辆动力学性能的影响[D]. 成都: 西南交通大学, 2012.

    HUANG Zhao-wei. Wheel tread wear and its influence on dynamic performance of vehicles[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)
    [110] 殷俊, 雷鹏程, 崔浩蕾, 等. 车轮踏面凹形磨耗对动车组车辆运行性能的影响[J]. 铁道科学与工程学报, 2020, 17(2): 297-305. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202002004.htm

    YIN Jun, LEI Peng-cheng, CUI Hao-lei, et al. Influence of hollow-worn wheels tread on running performance of EMU[J]. Journal of Railway Science and Engineering, 2020, 17(2): 297-305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202002004.htm
    [111] 邓永果. 车轮非圆化对高速车辆系统动力学性能的影响[D]. 成都: 西南交通大学, 2014.

    DENG Yong-guo. Effect of out-of-round wheel on vehicle system dynamics behavior[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese)
    [112] WANG Pu, WANG Shu-guo, SI Dao-lin. Numerical prediction of rail wear development in high-speed railway turnouts[J]. Journal of Rail and Rapid Transit, 2020, 234(10): 1299-1318. doi: 10.1177/0954409719896440
    [113] 肖乾, 李超, 昌超, 等. 高速列车型面不同磨耗状态下的过岔性能研究分析[J]. 铁道学报, 2020, 42(8): 51-59. doi: 10.3969/j.issn.1001-8360.2020.08.007

    XIAO Qian, LI Chao, CHANG Chao, et al. Research on turnout passing performance of high-speed train with different wheel wear states[J]. Journal of the China Railway Society, 2020, 42(8): 51-59. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.08.007
    [114] 王志. 钢坯啃伤对钢轨轧制质量的影响及控制措施[J]. 铁路采购与物流, 2018, 13(5): 26-28. doi: 10.3969/j.issn.1673-7121.2018.05.008

    WANG Zhi. Influence of steel slab nibbling on rail rolling quality and its control measures[J]. Railway Purchasing and Logistics, 2018, 13(5): 26-28. (in Chinses doi: 10.3969/j.issn.1673-7121.2018.05.008
    [115] 陶功明, 陈潇, 朱华林, 等. 钢坯缺陷在钢轨轧制过程中的演变规律分析[J]. 轧钢, 2018, 35(4): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGG201804015.htm

    TAO Gong-ming, CHEN Xiao, ZHU Hua-lin, et al. Analysis of the billet defects evolution during rail rolling[J]. Steel Rolling, 2018, 35(4): 50-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGG201804015.htm
    [116] 隋皓, 高晓蓉, 罗林, 等. 激光点源与线源激发表面波与钢轨缺陷作用的有限元仿真和实验[J]. 激光与光电子学进展, 2019, 56(8): 158-166. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201908018.htm

    SUI Hao, GAO Xiao-rong, LUO lin, et al. Finite element simulation and experiment on interaction of surface waves excited by laser point or line source with rail defects[J]. Laser and Optoelectronics Progress, 2019, 56(8): 158-166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201908018.htm
    [117] YANG Jiu-chuan, WANG Kai-yun, CHEN Hong-yu. Characteristics of wheel-rail vibration of the vertical section in high-speed railways[J]. Journal of Modern Transportation, 2012, 20(1): 10-15. doi: 10.1007/BF03325771
    [118] 杨广雪, 赵方伟, 李秋泽, 等. 高速列车轮轨接触几何参数对轮轨磨耗的影响研究[J]. 铁道学报, 2019, 41(2): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201902008.htm

    YANG Guang-xue, ZHAO Fang-wei, LI Qiu-ze, et al. Study of influences of high-speed train wheel-rail contact geometric parameters on wheel-rail wear[J]. Journal of the China Railway Society, 2019, 41(2): 50-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201902008.htm
    [119] 程蕾, 王旭华, 朱元昌, 等. 新兖线小半径曲线钢轨波磨病害整治[J]. 铁道技术监督, 2019, 47(6): 45-48, 58. doi: 10.3969/j.issn.1006-9178.2019.06.012

    CHENG Lei, WANG Xu-hua, ZHU Yuan-chang, et al. Treatment of rail corrugation defects with sharp-radius curve along Xinxiang-Yanzhou Railway[J]. Railway Quality Control, 2019, 47(6): 45-48, 58. (in Chinese) doi: 10.3969/j.issn.1006-9178.2019.06.012
    [120] 郭帅, 赵相吉, 何成刚, 等. 水介质下打磨磨痕对钢轨疲劳损伤的影响[J]. 中国机械工程, 2019, 30(8): 889-895. doi: 10.3969/j.issn.1004-132X.2019.08.002

    GUO Shuai, ZHAO Xiang-ji, HE Cheng-gang, et al. Effects of grinding marks on fatigue damage of rails under water conditions[J]. China Mechanical Engineering, 2019, 30(8): 889-895. (in Chinese) doi: 10.3969/j.issn.1004-132X.2019.08.002
    [121] CIOTLAUS M, KOLLO G, MARUSCEAC V, et al. Rail- wheel interaction and its influence on rail and wheels wear[J]. Procedia Manufacturing, 2019, 32: 895-900. doi: 10.1016/j.promfg.2019.02.300
    [122] 赵相吉. 表面缺陷对钢轨滚动磨损与接触疲劳性能影响研究[D]. 成都: 西南交通大学, 2019.

    ZHAO Xiang-ji. Research on the effect surface defect on rolling wear and contact fatigue performance of rail[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
    [123] 王莹莹. 钢轨闪光焊接头灰斑和微裂纹缺陷形成机理研究[D]. 北京: 中国铁道科学研究院, 2018.

    WANG Ying-ying. Research on formation mechanism of flat spots and micro-crack defects in rail welded joints[D]. Beijing: China Academy of Railway Science, 2018. (in Chinese)
    [124] ANDERSSON R, KABO E, EKBERG A. Numerical assessment of the loading of rolling contact fatigue cracks close to rail surface irregularities[J]. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43(5): 947-954. doi: 10.1111/ffe.13168
    [125] 周剑华, 任安超, 吉玉, 等. U71Mn钢轨踏面剥离掉块缺陷分析[J]. 中国铁道科学, 2013, 34(2): 1-6. doi: 10.3969/j.issn.1001-4632.2013.02.01

    ZHOU Jian-hua, REN An-chao, JI Yu, et al. Analysis of the reasons for the spalling defects on U71Mn rail treads[J]. China Railway Science, 2013, 34(2): 1-6. (in Chinese) doi: 10.3969/j.issn.1001-4632.2013.02.01
    [126] 徐凯, 李芾, 李金城, 等. 钢轨打磨对动车组轮轨匹配及磨耗影响研究[J]. 铁道学报, 2020, 42(3): 42-46. doi: 10.3969/j.issn.1001-8360.2020.03.005

    XU Kai, LI Fu, LI Jin-cheng, et al. Research on influence of rail grinding on EMU wheel-rail matching and wear[J]. Journal of the China Railway Society, 2020, 42(3): 42-46. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.03.005
    [127] 郭战伟. 普速铁路钢轨打磨对轮轨接触关系的影响[J]. 中国铁道科学, 2020, 41(6): 109-116. doi: 10.3969/j.issn.1001-4632.2020.06.12

    GUO Zhan-wei. Influence of rail grinding on wheel-rail contact relationship in general speed railway[J]. China Railway Science, 2020, 41(6): 109-116. (in Chinese) doi: 10.3969/j.issn.1001-4632.2020.06.12
    [128] 金新灿, 孙守光, 李强. 高速车辆运行过程中轮轨接触点的测试研究[J]. 铁道学报, 2019, 41(4): 41-47. doi: 10.3969/j.issn.1001-8360.2019.04.006

    JIN Xin-can, SUN Shou-guang, LI Qiang. Research on measuring rail-wheel contact points during operation of high-speed rolling stocks[J]. Journal of the China Railway Society, 2019, 41(4): 41-47. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.04.006
    [129] KAEWUNRUEN S, ISHIDA M, MARICH S. Dynamic wheel-rail interaction over rail squat defects[J]. Acoustics Australia, 2015, 43(1): 97-107. doi: 10.1007/s40857-014-0001-4
    [130] 范军, 王鹏, 刘孟奇, 等. 标准动车组车轮磨耗特征研究[J]. 噪声与振动控制, 2019, 39(6): 112-116, 158. doi: 10.3969/j.issn.1006-1355.2019.06.020

    FAN Jun, WANG Peng, LIU Meng-qi, et al. The feature of wheel wear of Chinese standard EMUs[J]. Noise and Vibration Control, 2019, 39(6): 112-116, 158. (in Chinese) doi: 10.3969/j.issn.1006-1355.2019.06.020
    [131] 应之丁, 陈家敏. 基于电磁作用增加轮轨黏着力的仿真研究[J]. 同济大学学报(自然科学版), 2020, 48(1): 101-104. doi: 10.11908/j.issn.0253-374x.19144

    YING Zhi-ding, CHEN Jia-min. Simulation research on increasing wheel-rail adhesion based on electromagnetic effect[J]. Journal of Tongji University (Natural Science), 2020, 48(1): 101-104. (in Chinese) doi: 10.11908/j.issn.0253-374x.19144
    [132] XUE Fu-chun. Investigation of rolling wheel-rail contact using an elaborate numerical simulation[J]. Journal of Rail and Rapid Transit, 2020, 234(10): 1198-1209. doi: 10.1177/0954409719886171
    [133] JEFFCOTT SC D H H. On the vibration of beams under the action of moving loads[J]. Philosophical Magazine Series 7, 1929, 8(48): 66-97. doi: 10.1080/14786440708564857
    [134] PRESCOTT J. A mathematical treatise on vibrations in railway bridges[J]. The Mathematical Gazette, 1934, 18(231): 329-330. doi: 10.2307/3605488
    [135] OLSSON M. Finite element, modal co-ordinate analysis of structures subjected to moving loads[J]. Journal of Sound and Vibration, 1985, 99(1): 1-12. doi: 10.1016/0022-460X(85)90440-7
    [136] GREEN M F, CEBON D. Dynamic response of highway bridges to heavy vehicle loads: theory and experimental validation[J]. Journal of Sound and Vibration, 1994, 170(1): 51-78. doi: 10.1006/jsvi.1994.1046
    [137] YANG Y. Vehicle-bridge interaction analysis by dynamic condensation method[J]. Journal of Structural Engineering, 1995, 121(11): 1636-1643. doi: 10.1061/(ASCE)0733-9445(1995)121:11(1636)
    [138] ZHAI Wan-ming, SUN Xiang. A detailed model for investigating vertical interaction between railway vehicle and track[J]. 2008, 23(S): 603-615.
    [139] 蔡成标, 翟婉明. 机车-轨道-桥梁垂向耦合动力学分析[J]. 成都: 西南交通大学学报, 1997(6): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT706.009.htm

    CAI Cheng-biao, ZHAI Wan-ming. Dynamic analysis of vertically coupled locomotive-track-bridge system[J]. Chengdu: Journal of Southwest Jiaotong University, 1997(6): 56-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT706.009.htm
    [140] 李小珍, 强士中. 列车-桥梁耦合振动研究的现状与发展趋势[J]. 铁道学报, 2002(5): 112-120. doi: 10.3321/j.issn:1001-8360.2002.05.024

    LI Xiao-zhen, QIANG Shi-zhong. State of the art review and trend of studies on vehicle bridge interaction[J]. Journal of the China Railway Society, 2002(5): 112-120. (in Chinese) doi: 10.3321/j.issn:1001-8360.2002.05.024
    [141] 石广田, 杨建近, 杨新文, 等. 基于动柔度法的车-线-桥垂向耦合振动分析[J]. 中南大学学报(自然科学版), 2017, 48(4): 1119-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201704036.htm

    SHI Guang-tian, YANG Jian-jin, YANG Xin-wen, et al. Vertical vehicle-track-bridge coupling vibration based on dynamic flexibility method[J]. Journal of Central South University (Science and Technology), 2017, 48(4): 1119-1126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201704036.htm
    [142] 李慧乐, 夏禾, 张楠, 等. 基于车桥耦合动力分析的桥梁动应力计算方法[J]. 中国铁道科学, 2015, 36(1): 68-74. doi: 10.3969/j.issn.1001-4632.2015.01.10

    LI Hui-le, XIA He, ZHANG Nan, et al. Calculation method for dynamic stress of bridge based on vehicle-bridge coupled dynamic analysis[J]. China Railway Science, 2015, 36(1): 68-74. (in Chinese) doi: 10.3969/j.issn.1001-4632.2015.01.10
    [143] 程曦, 姚林泉, 沙峰. 基于虚拟激励法的车-轨-桥耦合系统的随机振动响应分析[J]. 力学季刊, 2015, 36(2): 261-269. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201502010.htm

    CHENG Xi, YAO Lin-quan, SHA Feng. Random vibration response analysis of vehicle-rail-bridge coupling system based on virtual excitation method[J]. Chinese Quarterly of Mechanics, 2015, 36(2): 261-269. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201502010.htm
    [144] 辛莉峰, 李小珍, 朱艳. 基于eFAST方法的车-线-桥耦合系统全局敏感性分析[J]. 中国铁道科学, 2019, 40(4): 46-51. doi: 10.3969/j.issn.1001-4632.2019.04.06

    XIN Li-feng, LI Xiao-zhen, ZHU Yan. Global sensitivity analysis of vehicle-track-bridge coupling system based on eFAST method[J]. China Railway Science, 2019, 40(4): 46-51. (in Chinese) doi: 10.3969/j.issn.1001-4632.2019.04.06
    [145] TANABE M, WAKUI H, MATSUMOTO N, et al. Computational model of a Shinkansen train running on the railway structure and the industrial applications[J]. Journal of Materials Processing Technology, 2003, 140(1-3): 705-710. doi: 10.1016/S0924-0136(03)00777-5
    [146] 肖勇刚, 朱素红. 车桥耦合系统的非线性动力分析[J]. 振动与冲击, 2007(8): 104-108, 173. doi: 10.3969/j.issn.1000-3835.2007.08.026

    XIAO Yong-gang, ZHU Su-hong. Nonlinear dynamic analysis of vehicle-bridge coupled interaction system[J]. Journal of Vibration and Shock, 2007(8): 104-108, 173. (in Chinese) doi: 10.3969/j.issn.1000-3835.2007.08.026
    [147] 谭子翼, 唐雪松, 盛国刚. 车桥耦合系统的非线性动力响应分析[J]. 长沙理工大学学报(自然科学版), 2016, 13(1): 49-55. doi: 10.3969/j.issn.1672-9331.2016.01.008

    TAN Zi-yi, TANG Xue-song, SHENG Guo-gang. Analysis of the nonlinear dynamic behavior of the bridge under moving load system[J]. Journal of Changsha University of Science and Technology (Natural Science), 2016, 13(1): 49-55. (in Chinese) doi: 10.3969/j.issn.1672-9331.2016.01.008
    [148] 晋智斌, 李小珍, 朱艳, 等. 列车-桥梁耦合系统非线性随机振动分析[J]. 铁道学报, 2017, 39(9): 109-116. doi: 10.3969/j.issn.1001-8360.2017.09.016

    JIN Zhi-bin, LI Xiao-zhen, ZHU Yan, et al. Random vibration analysis of nonlinear vehicle-bridge dynamic interactions[J]. Journal of the China Railway Society, 2017, 39(9): 109-116. (in Chinese) doi: 10.3969/j.issn.1001-8360.2017.09.016
    [149] 杜宪亭, 夏禾, 余竹. 车桥耦合动力分析中地震动输入模式的研究[J]. 中国铁道科学, 2011, 32(6): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201106007.htm

    DU Xian-ting, XIA He, YU Zhu. Study on the input patterns of seismic ground motion in the dynamic interaction analysis of train-bridge system[J]. China Railway Science, 2011, 32(6): 34-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201106007.htm
    [150] 朱志辉, 王力东, 龚威, 等. 多种垂向轮轨关系的对比及改进的车-线-桥系统迭代模型的建立[J]. 中南大学学报(自然科学版), 2017, 48(6): 1585-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201706023.htm

    ZHU Zhi-hui, WANG Li-dong, GONG Wei, et al. Comparative analysis of several types of vertical wheel/rail relationship and construction of an improved iteration model for train-track-bridge system[J]. Journal of Central South University (Science and Technology), 2017, 48(6): 1585-1593. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201706023.htm
    [151] 昌超, 肖乾, 王亚朋. 高速列车车轮型面磨耗对轨道、桥梁振动特性影响分析[J]. 振动与冲击, 2019, 38(13): 185-196. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201913027.htm

    CHANG Chao, XIAO Qian, WANG Ya-peng. Effects of high-speed train's wheel wear on vibration characteristics of track and bridge[J]. Journal of Vibration and Shock, 2019, 38(13): 185-196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201913027.htm
    [152] 吴宇鹏, 刘林芽, 李纪阳. 不同轮轨型面匹配对车桥耦合系统振动的影响[J]. 铁道建筑, 2015(12): 22-25. doi: 10.3969/j.issn.1003-1995.2015.12.06

    WU Yu-peng, LIU Lin-ya, LI Ji-yang. Influence of different wheel-rail profile match on vehicle-bridge system coupled vibration[J]. Railway Engineering, 2015(12): 22-25. (in Chinese) doi: 10.3969/j.issn.1003-1995.2015.12.06
    [153] 张燕, 卢沛君. 扣件刚度对车辆-轨道-桥梁耦合系统频率响应的影响[J]. 铁道科学与工程学报, 2018, 15(12): 3141-3147. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201812017.htm

    ZHANG Yan, LU Pei-jun. The effect of fastener stiffness on the frequency response of vehicle-track-bridge coupling system[J]. Journal of Railway Science and Engineering, 2018, 15(12): 3141-3147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201812017.htm
    [154] 翟婉明, 王少林. 桥梁结构刚度对高速列车-轨道-桥梁耦合系统动力特性的影响[J]. 中国铁道科学, 2012, 33(1): 19-26. doi: 10.3969/j.issn.1001-4632.2012.01.04

    ZHAI Wan-ming, WANG Shao-lin. Influence of bridge structure stiffness on the dynamic performance of high-speed train-track-bridge coupled system[J]. China Railway Science, 2012, 33(1): 19-26. (in Chinese) doi: 10.3969/j.issn.1001-4632.2012.01.04
    [155] 王少钦, 马骎, 任艳荣, 等. 主跨1120 m铁路悬索桥风-车-桥耦合振动响应分析[J]. 铁道科学与工程学报, 2017, 14(6): 1241-1248. doi: 10.3969/j.issn.1672-7029.2017.06.017

    WANG Shao-qin, MA Qin, REN Yan-rong, et al. Dynamic interaction analysis on wind-train-bridge system of long-span railway suspension bridge[J]. Journal of Railway Science and Engineering, 2017, 14(6): 1241-1248. (in Chinese) doi: 10.3969/j.issn.1672-7029.2017.06.017
    [156] 唐俊峰, 何玮, 郭向荣, 等. 风攻角对强风下大跨度斜拉桥车-桥耦合振动的影响[J]. 中南大学学报(自然科学版), 2018, 49(7): 1760-1767. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201807024.htm

    TANG Jun-feng, HE Wei, GUO Xiang-rong, et al. Influence of wind attack angle on vehicle-bridge coupling vibration for long-span cable-stayed bridge during strong wind[J]. Journal of Central South University (Science and Technology), 2018, 49(7): 1760-1767. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201807024.htm
    [157] 郭文华, 洪新民, 陈春霞. 侧风下高铁列车交会运行时车-桥耦合振动[J]. 中国铁道科学, 2020, 41(4): 48-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202004006.htm

    GUO Wen-hua, HONG Xin-min, CHEN Chun-xia. Coupled vibration of train and bridge under high-speed trains passing each other in crosswind[J]. China Railway Science, 2020, 41(4): 48-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202004006.htm
    [158] 陈波, 杨登, 肖祥. 地震作用下多跨高架桥列车运行安全评估研究[J]. 中国安全科学学报, 2016, 26(10): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201610017.htm

    CHEN Bo, YANG Deng, XIAO Xiang. Safety evaluation of train crossing a multi-span elevated bridge under seismic excitation[J]. China Safety Science Journal, 2016, 26(10): 82-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201610017.htm
    [159] 雷虎军, 李小珍. 非一致地震激励下列车-轨道-桥梁耦合振动模型[J]. 西南交通大学学报, 2013, 48(5): 803-809. doi: 10.3969/j.issn.0258-2724.2013.05.004

    LEI Hu-jun, LI Xiao-zhen. Dynamic model for train-track-bridge coupling system subjected to non-uniform seismic excitation[J]. Journal of Southwest Jiaotong University, 2013, 48(5): 803-809. (in Chinese) doi: 10.3969/j.issn.0258-2724.2013.05.004
    [160] 周宁, 张卫华, 王冬. 受电弓等效模型参数识别及动态性能测试[J]. 西南交通大学学报, 2011, 46(3): 398-403. doi: 10.3969/j.issn.0258-2724.2011.03.007

    ZHOU Ning, ZHANG Wei-hua, WANG Dong. Lumped mass model for dynamic performance simulation of pantograph[J]. Journal of Southwest Jiaotong University, 2011, 46(3): 398-403. (in Chinese) doi: 10.3969/j.issn.0258-2724.2011.03.007
    [161] 周宁, 邹欢, 邹栋, 等. 城市轨道交通弓网系统仿真模型适应性研究[J]. 西南交通大学学报, 2017, 52(2): 408-415, 423. doi: 10.3969/j.issn.0258-2724.2017.02.026

    ZHOU Ning, ZOU Huan, ZOU Dong, et al. Investigation on the applicability of pantograph and catenary model urban railway system[J]. Journal of Southwest Jiaotong University, 2017, 52(2): 408-415, 423. (in Chinese) doi: 10.3969/j.issn.0258-2724.2017.02.026
    [162] MORRIS R B. The application of an analogue computer to a problem of pantograph and overhead fine dynamics[J]. Institution of Mechanical Engineers, 1964, 179(25): 782-802.
    [163] 周宁, 张卫华. 双弓作用下弓网动力学性能[J]. 西南交通大学学报, 2009, 44(4): 552-557. doi: 10.3969/j.issn.0258-2724.2009.04.014

    ZHOU Ning, ZHANG Wei-hua. Dynamic performances of pantograph-catenary system with double pantographs[J]. Journal of Southwest Jiaotong University, 2009, 44(4): 552-557. (in Chinese) doi: 10.3969/j.issn.0258-2724.2009.04.014
    [164] 吴孟臻, 刘洋, 许向红. 高速弓网系统动力学参数敏度分析及优化[J]. 力学学报, 2021, 53(1): 75-83. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202101006.htm

    WU Meng-zhen, LIU Yang, XU Xiang-hong. Sensitivity analysis and optimization on parameters of high speed pantograph-catenary system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 75-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202101006.htm
    [165] 马果垒, 马君, 苏安社, 等. 基于多体系统动力学的受电弓参数优化[J]. 大连交通大学学报, 2010, 31(4): 33-37. doi: 10.3969/j.issn.1673-9590.2010.04.009

    MA Guo-lei, MA Jun, SU An-she, et al. Research on parameter optimization of pantograph based on multi-body system dynamics[J]. Journal of Dalian Jiaotong University, 2010, 31(4): 33-37. (in Chinese) doi: 10.3969/j.issn.1673-9590.2010.04.009
    [166] 邹欢, 周宁, 邹栋, 等. 坡度和曲线线路对弓网受流性能影响规律研究[J]. 机车电传动, 2020(2): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202002023.htm

    ZOU Huan, ZHOU Ning, ZOU Dong, et al. Influence of rail line gradient and curve on pantograph-catenary dynamic performance[J]. Electric Drive for Locomotives, 2020(2): 104-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202002023.htm
    [167] 刘星. 高速列车受电弓空气动力学及车轨耦合振动对弓网受流影响[D]. 杭州: 浙江大学, 2012.

    LIU Xing. Influence of pantograph aerodynamics and vehicle-rail coupled vibration on current-collection performance of high-speed train[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
    [168] 李瑞平, 周宁, 张卫华, 等. 高速列车过隧道对弓网动力学影响分析[J]. 振动与冲击, 2013, 32(6): 33-37. doi: 10.3969/j.issn.1000-3835.2013.06.007

    LI Rui-ping, ZHOU Ning, ZHANG Wei-hua, et al. Influence of high-speed trains passing through tunnel on pantograph-catenary dynamic behaviors[J]. Journal of Vibration and Shock, 2013, 32(6): 33-37. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.06.007
    [169] POMBO J, AMBROSIO J, PERCIRA M, et al. Influence of the aerodynamic forces on the pantograph-catenary system for high-speed trains[J]. Vehicle System Dynamics, 2009, 47(11): 1327-1347. doi: 10.1080/00423110802613402
    [170] 刘长利. 强侧风下接触网响应特性及弓网运行安全分析[J]. 铁道标准设计, 2013(2): 105-109. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201302028.htm

    LIU Chang-li. Analysis on response characteristic of overhead catenary system and pantograph-catenary operation security under the action of strong sidewind[J]. Railway Standard Design, 2013(2): 105-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201302028.htm
    [171] 赵飞, 刘志刚, 韩志伟, 等. 随机风场对弓网系统动态性能影响研究[J]. 铁道学报, 2012, 34(10): 36-42. doi: 10.3969/j.issn.1001-8360.2012.10.006

    ZHAO Fei, LIU Zhi-gang, HAN Zhi-wei, et al. Simulation study on influence of stochastic wind field to dynamic behavior of pantograph-catenary system[J]. Journal of the China Railway Society, 2012, 34(10): 36-42. (in Chinese) doi: 10.3969/j.issn.1001-8360.2012.10.006
    [172] 李瑞平, 周宁, 吕青松, 等. 横风环境中弓网动力学性能分析[J]. 振动与冲击, 2014, 33(24): 39-44, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201424007.htm

    LI Rui-ping, ZHOU Ning, LYU Qing-song, et al. Pantograph- catenary dynamic behavior under cross wind[J]. Journal of Vibration and Shock, 2014, 33(24): 39-44, 53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201424007.htm
    [173] 宋洋, 刘志刚, 汪宏睿, 等. 脉动风下高速铁路接触网抖振对弓网受流性能的影响[J]. 铁道学报, 2014, 36(6): 27-34. doi: 10.3969/j.issn.1001-8360.2014.06.005

    SONG Yang, LIU Zhi-gang, WANG Hong-rui, et al. Influence of high-speed railway catenary buffeting on pantograph catenary current collection under fluctuating wind[J]. Journal of the China Railway Society, 2014, 36(6): 27-34. (in Chinese) doi: 10.3969/j.issn.1001-8360.2014.06.005
    [174] 段甫川, 刘志刚, 宋洋, 等. 计及覆冰和空气阻尼的弓网动态受流特性[J]. 西南交通大学学报, 2016, 51(1): 177-187. doi: 10.3969/j.issn.0258-2724.2016.01.025

    DUAN Fu-chuan, LIU Zhi-gang, SONG Yang, et al. Influences of ice load and air damping on dynamic current collection of pantograph-iced catenary[J]. Journal of Southwest Jiaotong University, 2016, 51(1): 177-187. (in Chinese) doi: 10.3969/j.issn.0258-2724.2016.01.025
    [175] 宦荣华, 焦京海, 苏光辉, 等. 计及接触线垂向不平顺的弓网耦合动力学分析[J]. 铁道学报, 2012, 34(7): 24-29. doi: 10.3969/j.issn.1001-8360.2012.07.004

    HUAN Rong-hua, JIAO Jing-hai, SU Guang-hui, et al. Dynamics of pantograph-catenary coupled system with contact wire vertical irregularities[J]. Journal of the China Railway Society, 2012, 34(7): 24-29. (in Chinese) doi: 10.3969/j.issn.1001-8360.2012.07.004
    [176] 梅桂明, 张卫华. 刚性悬挂接触网动力学研究[J]. 铁道学报, 2003, 25(2): 24-29. doi: 10.3321/j.issn:1001-8360.2003.02.006

    MEI Gui-ming, ZHANG Wei-hua. Study on dynamics of rigid suspension catenary[J]. Journal of the China Railway Society, 2003, 25(2): 24-29. (in Chinese) doi: 10.3321/j.issn:1001-8360.2003.02.006
    [177] 孙智, 李艳, 王江文, 等. 吊弦失效对弓网系统受流质量的影响规律研究[J]. 铁道机车车辆, 2017, 37(4): 84-89. doi: 10.3969/j.issn.1008-7842.2017.04.20

    SUN Zhi, LI Yan, WANG Jiang-wen, et al. Study on the law of influence of string failure on the quality of pantograph system[J]. Railway Locomotive and Car, 2017, 37(4): 84-89. (in Chinese) doi: 10.3969/j.issn.1008-7842.2017.04.20
    [178] 关金发, 吴积钦. 受电弓与刚性接触网动力耦合方程的数值解[J]. 铁道科学与工程学报, 2016, 13(2): 362-368. doi: 10.3969/j.issn.1672-7029.2016.02.024

    GUAN Jin-fa, WU Ji-qin. Dynamic coupling equations between pantograph and overhead rigid conductor rail by using numerical method[J]. Journal of Railway Science and Engineering, 2016, 13(2): 362-368. (in Chinese) doi: 10.3969/j.issn.1672-7029.2016.02.024
    [179] 王江文, 梅桂明, 李瑞平, 等. 弓网相互作用时受电弓关键部件动载荷研究[J]. 铁道学报, 2018, 40(3): 68-75. doi: 10.3969/j.issn.1001-8360.2018.03.010

    WANG Jiang-wen, MEI Gui-ming, LI Rui-ping, et al. Dynamic load research of key components of pantograph in pantograph-catenary interaction[J]. Journal of the China Railway Society, 2018, 40(3): 68-75. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.03.010
    [180] 蔡国华. 高速客车模型气动特性实验研究[J]. 实验流体力学, 2007, 21(4): 27-31. doi: 10.3969/j.issn.1672-9897.2007.04.006

    CAI Guo-hua. An experimental research on aerodynamic characteristics of the high-speed passenger train model[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(4): 27-31. (in Chinese) doi: 10.3969/j.issn.1672-9897.2007.04.006
    [181] 夏超, 单希壮, 杨志刚, 等. 风洞地面效应对高速列车空气动力学特性的影响[J]. 铁道学报, 2015, 37(4): 8-16. doi: 10.3969/j.issn.1001-8360.2015.04.002

    XIA Chao, SHAN Xi-zhuang, YANG Zhi-gang, et al. Influence of ground effect in wind tunnel on aerodynamics of high-speed train[J]. Journal of the China Railway Society, 2015, 37(4): 8-16. (in Chinese) doi: 10.3969/j.issn.1001-8360.2015.04.002
    [182] 于淼, 石俊杰, 耿亚彬. 列车气动阻力风洞试验研究[J]. 铁道机车车辆, 2017, 37(2): 50-52, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201702013.htm

    YU Miao, SHI Jun-jie, GENG Ya-bin. Train aerodynamic performance of wind tunnel test research[J]. Railway Locomotive and Car, 2017, 37(2): 50-52, 71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201702013.htm
    [183] 于梦阁, 李田, 张骞, 等. 强降雨环境下高速列车空气动力学性能[J]. 交通运输工程学报, 2019, 19(5): 96-105. doi: 10.3969/j.issn.1671-1637.2019.05.011

    YU Meng-ge, LI Tian, ZHANG Qian, et al. Aerodynamic performance of high-speed train under heavy rain condition[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 96-105. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.05.011
    [184] 李海庆, 于梦阁, 李田. 强降雨条件下高速列车气动特性分析[J]. 机械科学与技术, 2019, 38(11): 1790-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201911024.htm

    LI Hai-qing, YU Meng-ge, LI Tian. Aerodynamic characteristics analysis of a high-speed train under heavy rainfall conditions[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(11): 1790-1796. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201911024.htm
    [185] 张业, 孙振旭, 郭迪龙, 等. 风挡缝宽对高速列车气动性能的影响[J]. 铁道学报, 2017, 39(3): 19-24. doi: 10.3969/j.issn.1001-8360.2017.03.004

    ZHANG Ye, SUN Zhen-xu, GUO Di-long, et al. Effects of windshield slot width on aerodynamics of high-speed trains[J]. Journal of the China Railway Society, 2017, 39(3): 19-24. (in Chinese) doi: 10.3969/j.issn.1001-8360.2017.03.004
    [186] 汪久根, 陈仕洪, 王庆九. 仿生菱形表面织构对高速列车摩擦噪声的影响[J]. 交通运输工程学报, 2014, 14(1): 43-48. doi: 10.3969/j.issn.1671-1637.2014.01.008

    WANG Jiu-gen, CHEN Shi-hong, WANG Qing-jiu. Effect of bionic rhombic surface texture on frictional noise of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 43-48. (in Chinese) doi: 10.3969/j.issn.1671-1637.2014.01.008
    [187] 汪久根, 陈仕洪. Koch雪花表面织构设计与高铁空气摩擦噪声分析[J]. 机械工程学报, 2014, 50(7): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201407011.htm

    WANG Jiu-gen, CHEN Shi-hong. Bionic design of Koch snowflake surface texture and its effects on air frictional noise of high speed train[J]. Noise and Vibration Control, 2014, 50(7): 78-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201407011.htm
    [188] 朱海燕, 张翼, 赵怀瑞, 等. 基于边界层控制的高速列车减阻技术[J]. 交通运输工程学报, 2017, 17(2): 64-72. doi: 10.3969/j.issn.1671-1637.2017.02.007

    ZHU Hai-yan, ZHANG Yi, ZHAO Huai-rui, et al. Drag reduction technology of high-speed train based on boundary layer control[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 64-72. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.02.007
    [189] 刘海涛, 徐志龙. 基于仿生非光滑结构的高速列车受电弓杆件减阻降噪研究[J]. 噪声与振动控制, 2018, 38(增1): 269-272. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK2018S1064.htm

    LIU Hai-tao, XU Zhi-long. Study on drag and noise reduction of pantograph rods based on bionic non-smooth structures[J]. Noise and Vibration Control, 2018, 38(S1): 269-272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK2018S1064.htm
    [190] 孙健, 余以正, 姜旭东. 裙板对列车空气阻力及侧风稳定性影响的风洞试验研究[J]. 企业技术开发, 2016, 35(24): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-QYJK201624012.htm

    SUN Jian, YU Yi-zheng, JIANG Xu-dong. The wind tunnel test on the influence of skirt plates on air-drag and crosswind stability of high-speed trains[J]. Technological Development of Enterprise, 2016, 35(24): 39-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QYJK201624012.htm
    [191] 于梦阁, 潘振宽, 蒋荣超, 等. 基于近似模型的高速列车头型多目标优化设计[J]. 机械工程学报, 2019, 55(24): 178-186. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201924021.htm

    YU Meng-ge, PAN Zhen-kuan, JIANG Rong-chao, et al. Multi-objective optimization design of the high-speed train head based on the approximate model[J]. Journal of Mechanical Engineering, 2019, 55(24): 178-186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201924021.htm
    [192] 张亮, 张继业, 李田, 等. 超高速列车流线型头型多目标优化设计[J]. 机械工程学报, 2017, 53(2): 106-114. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201702014.htm

    ZHANG Liang, ZHANG Ji-ye, LI Tian, et al. Multi-objective optimization design of the streamlined head shape of super high-speed trains[J]. Journal of Mechanical Engineering, 2017, 53(2): 106-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201702014.htm
    [193] 王东镇, 葛剑敏. 高速列车运行时不同转向架区噪声特性[J]. 交通运输工程学报, 2020, 20(4): 174-183. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202004018.htm

    WANG Dong-zhen, GE Jian-min. Noise characteristics for different bogie area in high-speed train operation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 174-183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202004018.htm
    [194] 何德华, 陈厚嫦, 张岩. 明线交会对动车组动力学性能影响的仿真研究[J]. 铁道机车车辆, 2013, 33(增1): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC2013S1017.htm

    HE De-hua, CHEN Hou-chang, ZHANG Yan. Simulation investigation of dynamic performance when EMU passing each other in the open air[J]. Railway Locomotive and Car, 2013, 33(S1): 51-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC2013S1017.htm
    [195] 张敏, 吴晗, 赖姜, 等. 明线会车、隧道会车及过隧道时的高速列车动力响应[J]. 力学与实践, 2018, 40(5): 503-509. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201805003.htm

    ZHANG Min, WU Han, LAI Jiang, et al. Dynamic response of high speed train meeting in open air, meeting in tunnel and passing tunnel[J]. Mechanics in Engineering, 2018, 40(5): 503-509. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201805003.htm
    [196] 王宏谋, 陈厚嫦, 朱俊廷, 等. 线间距和阻塞比对动车组空气动力学性能影响的分析[J]. 铁道机车车辆, 2017, 37(5): 31-33, 43. doi: 10.3969/j.issn.1008-7842.2017.05.07

    WANG Hong-mou, CHEN Hou-chang, ZHU Jun-ting, et al. Analysis of EMU aerodynamic performance influenced by line spacing and tunnel section[J]. Railway Locomotive and Car, 2017, 37(5): 31-33, 43. (in Chinese) doi: 10.3969/j.issn.1008-7842.2017.05.07
    [197] 郭安宁, 罗禄林, 贾永兴, 等. 开孔隔墙隧道内单列高速列车运行空气阻力的数值模拟研究[J]. 现代隧道技术, 2017, 54(4): 152-159, 166. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201704020.htm

    GUO An-ning, LUO Lu-lin, JIA Yong-xing, et al. Numerical simulation of air resistance generated by a high-speed train passing through a tunnel with a perforated wall[J]. Modern Tunneling Technology, 2017, 54(4): 152-159, 166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201704020.htm
    [198] 贾永兴, 景璟, 梅元贵. 单列高速列车通过隧道空气阻力数值模拟研究[J]. 机械工程学报, 2020, 56(4): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202004024.htm

    JIA Yong-xing, JING Jing, MEI Yuan-gui. Numerical simulation on air resistance of high-speed train passing through tunnel[J]. Journal of Mechanical Engineering, 2020, 56(4): 193-200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202004024.htm
    [199] 韩运动, 姚松, 陈大伟, 等. 基于实车试验的高速列车隧道压力波影响因素[J]. 中南大学学报(自然科学版), 2017, 48(5): 1404-1412. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201705037.htm

    HAN Yun-dong, YAO Song, CHEN Da-wei, et al. Influential factors of tunnel pressure wave on high-speed train by real vehicle test[J]. Journal of Central South University (Science and Technology), 2017, 48(5): 1404-1412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201705037.htm
    [200] 李红梅, 杨飞, 张骞, 等. 高速列车隧道内等速交会对车辆动力学性能的影响[J]. 中国铁道科学, 2020, 41(1): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202001010.htm

    LI Hong-mei, YANG Fei, ZHANG Qian, et al. Influence of intersection by same speed of high speed trains in tunnel on vehicle dynamic performance[J]. China Railway Science, 2020, 41(1): 64-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202001010.htm
  • 加载中
图(22) / 表(1)
计量
  • 文章访问数:  1680
  • HTML全文浏览量:  375
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-28
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回