留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢轨波磨研究进展

朱海燕 袁遥 肖乾 黎洁 郑宇轩

朱海燕, 袁遥, 肖乾, 黎洁, 郑宇轩. 钢轨波磨研究进展[J]. 交通运输工程学报, 2021, 21(3): 110-133. doi: 10.19818/j.cnki.1671-1637.2021.03.006
引用本文: 朱海燕, 袁遥, 肖乾, 黎洁, 郑宇轩. 钢轨波磨研究进展[J]. 交通运输工程学报, 2021, 21(3): 110-133. doi: 10.19818/j.cnki.1671-1637.2021.03.006
ZHU Hai-yan, YUAN Yao, XIAO Qian, LI Jie, ZHENG Yu-xuan. Research progress on rail corrugation[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 110-133. doi: 10.19818/j.cnki.1671-1637.2021.03.006
Citation: ZHU Hai-yan, YUAN Yao, XIAO Qian, LI Jie, ZHENG Yu-xuan. Research progress on rail corrugation[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 110-133. doi: 10.19818/j.cnki.1671-1637.2021.03.006

钢轨波磨研究进展

doi: 10.19818/j.cnki.1671-1637.2021.03.006
基金项目: 

国家自然科学基金项目 51665015

江西省自然科学基金项目 20202ACBL204008

牵引动力国家重点实验室开放课题 TPL2007

江西省教育厅科学技术研究项目 GJJ190308

江西省教育厅科学技术研究项目 GJJ190333

江西省教育厅科学技术研究项目 GJJ200614

详细信息
    作者简介:

    朱海燕(1975-),男,江西新干人,华东交通大学副教授,工学博士,从事车辆系统动力学与疲劳强度研究

  • 中图分类号: U211.5

Research progress on rail corrugation

Funds: 

National Natural Science Foundation of China 51665015

Natural Science Foundation of Jiangxi Province 20202ACBL204008

Open Project of State Key Laboratory of Traction Power TPL2007

Science and Technology Research Project of Jiangxi Education Department GJJ190308

Science and Technology Research Project of Jiangxi Education Department GJJ190333

Science and Technology Research Project of Jiangxi Education Department GJJ200614

More Information
  • 摘要: 为了解轨道车辆运营中普遍存在的钢轨波磨问题,分析了钢轨波磨的形成机理,阐述了钢轨波磨对车辆-轨道系统动力学性能的影响,综述了常见的钢轨波磨检测、监测与抑制方法,并展望了钢轨波磨的研究方向。研究结果表明:车辆-轨道系统耦合振动、轮轨反馈振动、轮轨自激振动和轮轨接触振动是形成钢轨波磨的主因,车辆-轨道结构、线路运营条件、轮轨材料、钢轨型面和车轮踏面轮廓等多方面因素相互耦合作用亦会引起钢轨波磨;重载、高速铁路和地铁钢轨波磨会影响车辆-轨道系统动力学性能和车辆与轨道零部件寿命,也会影响扣件、钢轨、轨枕、轨道板(道砟)和轴箱等零部件的振动特性,各零部件的阻尼、刚度等物理参数与运行条件不匹配时也会造成钢轨波磨,列车长时间运行在钢轨波磨路段时会导致车辆-轨道结构产生强烈共振,造成严重疲劳损伤,影响行车安全;检测与监测是研究和发现钢轨波磨的重要辅助手段,抑制钢轨波磨主要通过改善轮轨接触关系、钢轨打磨、提高钢轨表面材料硬度、添加相关摩擦调节剂和轮轨润滑剂、使用钢轨吸振器技术、优化轮轨系统结构以及调整列车运营规定等措施来实现;目前,钢轨打磨仍是消除和减轻钢轨波磨最直接、最有效和最经济的措施,应提升并改善钢轨打磨技术。

     

  • 图  1  高速铁路线路钢轨波磨

    Figure  1.  Rail corrugation in high-speed railway line

    图  2  钢轨波磨基本反馈机制

    Figure  2.  Basic feedback mechanism of rail corrugation

    图  3  单轮对曲线通过轮轨接触示意

    Figure  3.  Schematic of single wheelset curve through wheel-rail contact

    图  4  蠕滑力特性曲线

    Figure  4.  Creep force characteristic curve

    图  5  各阶固有频率

    Figure  5.  Natural frequencies of each order

    图  6  不同速度下加速度仿真峰值、波长与波幅之间关系

    Figure  6.  Relationships among simulated peak acceleration, wavelength and amplitude under different speeds

    图  7  不同速度下主频率、波长和波幅之间关系

    Figure  7.  Relationships among dominant frequency, wavelength and amplitude under different speeds

    图  8  不同速度工况下钢轨波磨波长与振动频率关系

    Figure  8.  Relationships between wavelength and vibration frequency of rail corrugation under different speeds

    图  9  钢轨打磨前后轨道零部件振动加速度均方根变化

    Figure  9.  Root mean square variations of vibration accelerations of rail components before and after rail grinding

    图  10  轨道结构对列车振动加速度有效值的影响

    Figure  10.  Influence of track structure on effective value of train vibration acceleration

    图  11  不同速度特征频率统计

    Figure  11.  Statistics of characteristic frequencies of different speeds

    图  12  各测点随打磨次数的角度变化

    Figure  12.  Angle variations for each measuring point with number of grinding

    图  13  钢轨裂纹和波磨扩展机制

    Figure  13.  Propagation mechanisms of rail crack and corrugation

    图  14  钢轨波磨现象应对策略

    Figure  14.  Coping strategies for rail corrugation phenomenon

    表  1  按固定波长机理和损伤机理分类钢轨波磨

    Table  1.   Classifications of rail corrugations according to fixed wavelength mechanism and damage mechanism

    类型 固定波长机理 损伤机理 发生地点 频率/Hz
    响轨 Pinned-Pinned共振 磨耗 直线、曲线、高轨 400~1200
    车辙 驱动轮对二阶扭转共振 磨耗 曲线 250~400
    P2力共振 P2力共振 磨耗 直线、曲线高轨 50~100
    重载 P2力共振 波谷塑性流动 直线、曲线 50~100
    轻轨 P2力共振 塑性弯曲 直线、曲线 50~100
    轨道形式 轨道共振 磨耗 直线、曲线
    下载: 导出CSV

    表  2  钢轨波磨成因理论分类

    Table  2.   Theoretical classification of rail corrugation causes

    波磨成因理论 分类
    动力类 轮轨接触共振理论(共振、反馈)
    轮轨垂向共振理论(共振、反馈)
    轮对振动 轮对横向振动理论(共振、自激)
    轮对弯曲振动理论(自激、反馈)
    轮对扭转振动理论(自激、反馈)
    磨耗功波动理论(自激、反馈、共振)
    声波效应理论(共振)
    非动力类 钢轨冶金性能理论
    残余应力理论
    不均匀磨损及锈蚀理论
    不均匀塑流理论接触疲劳理论
    应力极限理论
    轮轨廓形匹配理论
    下载: 导出CSV

    表  3  钢轨波磨的影响因素和抑制措施

    Table  3.   Influencing factors and suppression measures of rail corrugation

    线路条件 曲线半径 轨道阻尼 轨道刚度 外轨超高
    车辆结构 轮对轴刚度 一系悬挂 轮缘摩擦系数 轴重
    其他影响 轮轨接触面特性 运营条件
    抑制措施 减小轨道 不平顺加大轨道弹性,提高轨道阻尼 适当降低曲线外轨超高
    钢轨倒换 钢轨打磨 提高钢轨材质强度及耐磨性
    增大轮对轴刚度 增大一系悬挂阻尼 适当控制涂油润滑
    下载: 导出CSV
  • [1] 温泽峰. 钢轨波浪形磨损研究[D]. 成都: 西南交通大学, 2006.

    WEN Ze-feng. Study on rail corrugation[D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese)
    [2] 金学松, 李霞, 李伟, 等铁路钢轨波浪形磨损研究进展[J]. 西南交通大学学报, 2016, 51(2): 264-273. doi: 10.3969/j.issn.0258-2724.2016.02.006

    JIN Xue-song, LI Xia, LI Wei, et al. Review of rail corrugation progress[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 264-273. (in Chinese) doi: 10.3969/j.issn.0258-2724.2016.02.006
    [3] OOSTERMEIJER K H. 钢轨波纹磨耗研究综述[J]. 都市快轨交通, 2010, 23(2): 6-13. http://www.sciencedirect.com/science/article/pii/S0043164808001439

    OOSTERMEIJER K H. Review on short pitch rail corrugation studies[J]. Urban Rapid Rail Transit, 2010, 23(2): 6-13. (in Chinese) http://www.sciencedirect.com/science/article/pii/S0043164808001439
    [4] SATO Y, MATSUMOTO A, KNOTHE K. Review on rail corrugation studies[J]. Wear, 2002, 253(1/2): 130-139. http://www.sciencedirect.com/science/article/pii/S0043164802000923
    [5] 康熙, 陈光雄, 吕金洲, 等. 缩尺轮轨模型中钢轨波磨的相似性[J]. 西南交通大学学报, 2020, 55(6): 1320-1327. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202006025.htm

    KANG Xi, CHEN Guang-xiong, LYU Jin-zhou, et al. Similarity of small-scale wheelset-track model for investigation of rail corrugation[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1320-1327. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202006025.htm
    [6] GRASSIE S L. Rail corrugation: characteristics, causes, and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal Rail Rapid Transit, 2009, 223(6): 581-596. doi: 10.1243/09544097JRRT264
    [7] OOSTERMEIJER K H. Review on short pitch rail corrugation studies[J]. Wear, 2008, 265(9/10): 1231-1237.
    [8] 刘学毅, 王平, 万复光. 重载线路钢轨波形磨耗成因研究[J]. 铁道学报, 2000, 22(1): 98-103. doi: 10.3321/j.issn:1001-8360.2000.01.021

    LIU Xue-yi, WANG Ping, WAN Fu-guang. Formation mechanism of rail corrugation in heavy-haul railline[J]. Journal of the China Railway Society, 2000, 22(1): 98-103. (in Chinese) doi: 10.3321/j.issn:1001-8360.2000.01.021
    [9] 李谷, 张志超, 祖宏林, 等. 高速铁路典型轨道病害下轮轨力响应特性试验研究[J]. 中国铁道科学, 2019, 40(6): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201906005.htm

    LI Gu, ZHANG Zhi-chao, ZU Hong-lin, et al. Experimental study on wheel-rail force response characteristics under typical track defects of high speed railway[J]. China Railway Science, 2019, 40(6): 30-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201906005.htm
    [10] 陈光雄, 钱韦吉, 莫继良, 等. 轮轨摩擦自激振动引起小半径曲线钢轨波磨的瞬态动力学[J]. 机械工程学报, 2014, 50(9): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201409010.htm

    CHEN Guang-xiong, QIAN Wei-ji, MO Ji-liang, et al. A transient dynamics study on wear-type rail corrugation on a tight curve due to the friction-induced self-excited vibration of a wheelset-track system[J]. Journal of Mechanical Engineering, 2014, 50(9): 71-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201409010.htm
    [11] 崔晓璐, 闫硕, 陈光雄. 短轨枕区间钢轨波磨的现场测试和数值研究[J]. 振动与冲击, 2018, 37(13): 171-176. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201813028.htm

    CUI Xiao-lu, YAN Shuo, CHEN Guang-xiong. Field measurement and numerical simulation for rail corrugation in sector of fixed dual short sleeper[J]. Journal of Vibration and Shock, 2018, 37(13): 171-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201813028.htm
    [12] 吴杰, 陈光雄. 轮轨摩擦自激振动引起科隆蛋轨枕钢轨波磨的理论研究[J]. 润滑与密封, 2015, 40(8): 86-90. doi: 10.3969/j.issn.0254-0150.2015.08.018

    WU Jie, CHEN Guang-xiong. Study on corrugation of rails equipped with Cologne sleepers from the viewpoint of frictional self-excited vibration of a wheelset-track system[J]. Lubrication Engineering, 2015, 40(8): 86-90. (in Chinese) doi: 10.3969/j.issn.0254-0150.2015.08.018
    [13] 张胜, 陈光雄, 赵晓男, 等. 小半径曲线钢轨波磨预测模型及在波磨抑制中的应用[J]. 润滑与密封, 2019, 44(6): 41-46. doi: 10.3969/j.issn.0254-0150.2019.06.006

    ZHANG Sheng, CHEN Guang-xiong, ZHAO Xiao-nan, et al. Prediction model of rail corrugation on tight curve and its application in corrugation suppression[J]. Lubrication Engineering, 2019, 44(6): 41-46. (in Chinese) doi: 10.3969/j.issn.0254-0150.2019.06.006
    [14] OUYANG Hua-jiang, NACK W, YUAN Yong-bin, et al. Numerical analysis of automotive disc brake squeal: a review[J]. International Journal of Vehicle Noise and Vibration, 2005, 1(3/4): 207-231. doi: 10.1504/IJVNV.2005.007524
    [15] 崔晓璐, 陈光雄, 杨宏光. 轮对结构和扣件刚度对钢轨波磨的影响[J]. 西南交通大学学报, 2017, 52(1): 112-117. doi: 10.3969/j.issn.0258-2724.2017.01.016

    CUI Xiao-lu, CHEN Guang-xiong, YANG Hong-guang. Influence of wheelset structure and fastener stiffness on rail corrugation[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 112-117. (in Chinese) doi: 10.3969/j.issn.0258-2724.2017.01.016
    [16] 张继业, 金学松, 张卫华. 基于高频轮轨作用的波浪型磨损研究[J]. 应用力学学报, 2004, 21(4): 6-11. doi: 10.3969/j.issn.1000-4939.2004.04.002

    ZHANG Ji-ye, JIN Xue-song, ZHANG Wei-hua. Rail corrugation at high frequency wheel/rail interaction[J]. Chinese Journal of Applied Mechanics, 2004, 21(4): 6-11. (in Chinese) doi: 10.3969/j.issn.1000-4939.2004.04.002
    [17] 李伟, 周志军, 温泽峰. 地铁弹性短轨枕轨道的钢轨波磨萌生原因[J]. 西南交通大学学报, 2021, 56(3): 619-626. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202103022.htm

    LI Wei, ZHOU Zhi-jun, WEN Ze-feng. Analysis on initiation cause of subway rail corrugation on a track with rubber-booted short sleepers[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 619-626. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202103022.htm
    [18] 李霞, 李伟, 吴磊, 等. 套靴轨枕轨道钢轨波磨初步研究[J]. 铁道学报, 2014 36(11): 80-85. doi: 10.3969/j.issn.1001-8360.2014.11.016

    LI Xia, LI Wei, WU Lei, et al. Preliminary study on rail corrugation of rubber booted short sleepers track[J]. Journal of the China Railway Society, 2014, 36(11): 80-85. (in Chinese) doi: 10.3969/j.issn.1001-8360.2014.11.016
    [19] 李霞, 李伟, 申莹莹, 等. 基于轨道振动理论的梯形轨枕轨道钢轨波磨研究[J]. 机械工程学报, 2016, 52(22): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201622016.htm

    LI Xia, LI Wei, SHEN Ying-ying, et al. Study on the rail corrugation of the ladder-type sleepers track based on the track vibration theory[J]. Journal of Mechanical Engineering, 2016, 52(22): 121-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201622016.htm
    [20] 尧辉明, 沈钢, 高利君. 基于试验验证的磨耗型钢轨波磨形成机理[J]. 同济大学学报(自然科学版), 2018, 46(10): 1427-1432. doi: 10.11908/j.issn.0253-374x.2018.10.015

    YAO Hui-ming, SHEN Gang, GAO Li-jun. Formation mechanism of worn profile rail corrugation based on experimental verification[J]. Journal of Tongji University (Natural Science), 2018, 46(10): 1427-1432. (in Chinese) doi: 10.11908/j.issn.0253-374x.2018.10.015
    [21] LEI Yang, TIAN Xin-yu, QI Fa-lin, et al. Vertical track irregularity influence on the wheel high-frequency vibration in wheel-rail system[J]. Mathematical Problems in Engineering, 2016, 2016: 5082319. http://d.wanfangdata.com.cn/periodical/Doaj000004702322
    [22] JIN Xue-song, WEN Ze-feng, ZHANG Wei-hua, et al. Numerical simulation of rail corrugation on a curved track[J]. Computer and Structures, 2005, 83: 2052-2065. doi: 10.1016/j.compstruc.2005.03.012
    [23] 金学松, 温泽峰, 王开云. 钢轨磨耗型波磨计算模型与数值方法[J]. 交通运输工程学报, 2005, 5(2): 12-18. doi: 10.3321/j.issn:1671-1637.2005.02.004

    JIN Xue-song, WEN Ze-feng, WANG Kai-yun. Theoretical model and numerical method of rail corrugation[J]. Journal of Traffic and Transportation Engineering, 2005, 5(2): 12-18. (in Chinese) doi: 10.3321/j.issn:1671-1637.2005.02.004
    [24] 金学松, 温泽峰, 肖新标. 曲线钢轨初始波磨形成的机理分析[J]. 机械工程学报, 2008, 44(3): 1-8, 15. doi: 10.3321/j.issn:0577-6686.2008.03.001

    JIN Xue-song, WEN Ze-feng, XIAO Xin-biao. Investigation into mechanism of initial rail corrugation formation at a curved track[J]. Journal of Mechanical Engineering, 2008, 44(3): 1-8, 15. (in Chinese) doi: 10.3321/j.issn:0577-6686.2008.03.001
    [25] WU T X, THOMPSON D J. An investigation into rail corrugation due to micro-slip under multiple wheel/rail interactions[J]. Wear, 2005, 258(7/8): 1115-1125. http://www.sciencedirect.com/science/article/pii/S0043164804003217
    [26] YU Miao, WANG Wei-dong, LIU Jin-zhao, et al. The transient response of high-speed wheel/rail rolling contact on "roaring rails" corrugation[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(10): 1068-1080. doi: 10.1177/0954409719825682
    [27] 任利惠, 谢纲, 伍智敏, 等. 短波波磨状态的轮轨纵向蠕滑力特性[J]. 交通运输工程学报, 2011, 11(2): 24-31. doi: 10.3969/j.issn.1671-1637.2011.02.005

    REN Li-hui, XIE Gang, WU Zhi-min, et al. Longitudinal creep force properties of wheel and rail under short-pitch corrugation state[J]. Journal of Traffic and Transportation Engineering, 2011, 11(2): 24-31. (in Chinese) doi: 10.3969/j.issn.1671-1637.2011.02.005
    [28] ZHAO Xin, WEN Ze-feng, WANG Heng-yu, et al. Modeling of high-speed wheel-rail rolling contact on a corrugated rail and corrugation development[J]. Journal of Zhejiang University—Science A (Applied Physics and Engineering), 2014, 15(12): 946-963. doi: 10.1631/jzus.A1400191/figures/21
    [29] 周宇, 木东升, 邝迪峰, 等. 城市轨道交通钢轨磨耗和裂纹萌生分析与选型建议[J]. 交通运输工程学报, 2018, 18(4): 82-89. doi: 10.3969/j.issn.1671-1637.2018.04.009

    ZHOU Yu, MU Dong-sheng, KUANG Di-feng, et al. Analysis on rail wear and crack initiation and recommendation on rail selection in urban rail transit[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 82-89. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.04.009
    [30] WU B W, CHEN G X, KANG X, et al. Study on the origin of rail corrugation at a long downhill braking section based on friction-excited oscillation[J]. Tribology Transactions, 2020, 63(3): 439-452. doi: 10.1080/10402004.2019.1707336
    [31] 贺佳. 重载铁路小半径曲线地段钢轨波磨数值分析[J]. 土木工程, 2019, 8(3): 759-771.

    HE Jia. Numerical analysis of rail corrugation in small radius curve section of heavy haul railway[J]. Hans Journal of Civil Engineering, 2019, 8(3): 759-771. (in Chinese)
    [32] 熊嘉阳, 邓永权, 曹亚博, 等. 重载铁路轮轨磨耗及其对安全运行的影响[J]. 西南交通大学学报, 2014, 49(2): 302-309. doi: 10.3969/j.issn.0258-2724.2014.02.018

    XIONG Jia-yang, DENG Yong-quan, CAO Ya-bo, et al. Wheel-rail wear on heavy haul lines and its influences on running stability of trains[J]. Journal of Southwest Jiaotong University, 2014, 49(2): 302-309. (in Chinese) doi: 10.3969/j.issn.0258-2724.2014.02.018
    [33] 郭火明, 王文健, 刘腾飞, 等. 重载铁路钢轨损伤行为分析[J]. 中国机械工程, 2014, 25(2): 267-272. doi: 10.3969/j.issn.1004-132X.2014.02.025

    GUO Huo-ming, WANG Wen-jian, LIU Teng-fei, et al. Analysis of damage behavior of heavy-haul railway rail[J]. China Mechanical Engineering, 2014, 25(2): 267-272. (in Chinese) doi: 10.3969/j.issn.1004-132X.2014.02.025
    [34] 许玉德, 严道斌, 孙小辉, 等. 重载铁路钢轨磨耗状态下的轮轨法向接触特性[J]. 同济大学学报(自然科学版), 2019, 47(5): 663-667, 680. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201905010.htm

    XU Yu-de, YAN Dao-bin, SUN Xiao-hui, et al. Wheel-rail normal contact characteristics of heavy haul worn rails[J]. Journal of Tongji University (Natural Science), 2019, 47(5): 663-667, 680. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201905010.htm
    [35] 宋小林, 翟婉明, 王开云. 波磨对轮轨系统动力特性的影响分析[J]. 中国铁道科学, 2018, 39(5): 42-50. doi: 10.3969/j.issn.1001-4632.2018.05.06

    SONG Xiao-lin, ZHAI Wan-ming, WANG Kai-yun. Effect of rail corrugation on dynamic properties of wheel-rail system[J]. China Railway Science, 2018, 39(5): 42-50. (in Chinese) doi: 10.3969/j.issn.1001-4632.2018.05.06
    [36] 郭建强, 朱雷威, 刘晓龙, 等. 地铁司机室噪声与钢轨波磨关系的试验与仿真研究[J]. 机械工程学报, 2019, 55(16): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201916015.htm

    GUO Jian-qiang, ZHU Lei-wei, LIU Xiao-long, et al. Experimental and simulation study on the relationship between interior noise of metro cab and rail corrugation[J]. Journal of Mechanical Engineering, 2019, 55(16): 141-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201916015.htm
    [37] HAN Jian, XIAO Xin-biao, WU Yue, et al. Effect of rail corrugation on metro interior noise and its control[J]. Applied Acoustics, 2018, 130: 63-70. doi: 10.1016/j.apacoust.2017.09.007
    [38] 冯陈程, 刘晓龙, 李伟, 等. 短波长钢轨波磨对地铁车辆车内噪声的影响[J]. 噪声与振动控制, 2018, 38(6): 113-117. doi: 10.3969/j.issn.1006-1355.2018.06.022

    FENG Chen-cheng, LIU Xiao-long, LI Wei, et al. Influence of short pitch rail corrugation on interior noise of metro vehicles[J]. Noise and Vibration Control, 2018, 38(6): 113-117. (in Chinese) doi: 10.3969/j.issn.1006-1355.2018.06.022
    [39] XING Meng-ting, ZHAO Cai-you, WANG Ping, et al. A numerical analysis of ground vibration induced by typical rail corrugation of underground subway[J]. Shock and Vibration, 2019, 2019: 8406813. http://www.researchgate.net/publication/332007059_A_Numerical_Analysis_of_Ground_Vibration_Induced_by_Typical_Rail_Corrugation_of_Underground_Subway/download
    [40] LING Liang, LI Wei, FOO E, et al. Investigation into the vibration of metro bogies induced by rail corrugation[J]. Chinese Journal of Mechanical Engineering, 2017, 30(1): 93-102. doi: 10.3901/CJME.2016.1018.121
    [41] XIAO Hong, YANG Song, WANG Hao-yu, et al. Initiation and development of rail corrugation based on track vibration in metro systems[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(9): 095440971876895.
    [42] CORREA N, OYARZABAL O, VADILLO E G, et al. Rail corrugation development in high speed lines[J]. Wear, 2010, 271(9/10): 2438-2447. http://www.sciencedirect.com/science/article/pii/S0043164811001414
    [43] 蒋忠辉, 赵国堂, 张合吉, 等. 车辆轨道关键参数对高速铁路钢轨波磨发展的影响[J]. 机械工程学报, 2018, 54(4): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804010.htm

    JIANG Zhong-hui, ZHAO guo-tang, ZHANG He-ji, et al. Effects of vehicle and track key parameters on the rail corrugation of high-speed railways[J]. Journal of Mechanical Engineering, 2018, 54(4): 57-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804010.htm
    [44] 郭涛, 侯银庆, 胡晓依, 等. 钢轨波磨对高速车辆动力学性能的影响[J]. 铁道建筑, 2019, 59(3): 111-115. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201903028.htm

    GUO Tao, HOU Yin-qing, HU Xiao-yi, et al. Influences of rail corrugations on dynamic performances of high speed vehicles[J]. Railway Engineering, 2019, 59(3): 111-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201903028.htm
    [45] 刘国云, 曾京, 张波. 钢轨波磨对高速车辆振动特性的影响[J]. 振动与冲击, 2019, 38(6): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906021.htm

    LIU Guo-yun, ZENG Jing, ZHANG Bo. Influence of rail corrugation on high-speed vehicle vibration performances[J]. Journal of Vibration and Shock, 2019, 38(6): 137-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906021.htm
    [46] 谷永磊, 赵国堂, 王衡禹, 等. 轨道振动特性对高速铁路钢轨波磨的影响[J]. 中国铁道科学, 2016, 37(4): 42-47. doi: 10.3969/j.issn.1001-4632.2016.04.07

    GU Yong-lei, ZHAO Guo-tang, WANG Heng-yu, et al. Effect of track vibration characteristics on rail corrugation of high speed railway[J]. China Railway Science, 2016, 37(4): 42-47. (in Chinese) doi: 10.3969/j.issn.1001-4632.2016.04.07
    [47] 谷永磊, 赵国堂, 金学松, 等. 高速铁路钢轨波磨对车辆-轨道动态响应的影响[J]. 中国铁道科学, 2015, 36(4): 27-31. doi: 10.3969/j.issn.1001-4632.2015.04.05

    GU Yong-lei, ZHAO Guo-tang, JIN Xue-song, et al. Effects of rail corrugation of high speed railway on vehicle-track coupling dynamic response[J]. China Railway Science, 2015, 36(4): 27-31. (in Chinese) doi: 10.3969/j.issn.1001-4632.2015.04.05
    [48] 姜子清, 司道林, 李伟, 等. 高速铁路钢轨波磨研究[J]. 中国铁道科学, 2014, 35(4): 9-14. doi: 10.3969/j.issn.1001-4632.2014.04.02

    JIANG Zi-qing, SI Dao-lin, LI Wei, et al. On rail corrugation of high speed railway[J]. China Railway Science, 2014, 35(4): 9-14. (in Chinese) doi: 10.3969/j.issn.1001-4632.2014.04.02
    [49] 于淼, 王卫东, 刘金朝. 钢轨波磨区段高速轮轨瞬态滚动接触高频动态特性[J]. 中国铁道科学, 2018, 39(5): 58-66. doi: 10.3969/j.issn.1001-4632.2018.05.08

    YU Miao, WANG Wei-dong, LIU Jin-zhao. High frequency dynamic characteristics of high-speed wheel-rail transient rolling contact in rail corrugation section[J]. China Railway Science, 2018, 39(5): 58-66. (in Chinese) doi: 10.3969/j.issn.1001-4632.2018.05.08
    [50] 冯仲伟. 动车组通过小半径曲线安全性及钢轨磨耗研究[D]. 北京: 中国铁道科学研究院, 2018.

    FENG Zhong-wei. Study on the operation safety and the rail wear about EMU passing through small radius curves[D]. Beijing: China Academy of Railway Sciences, 2018. (in Chinese)
    [51] 于淼. 高速铁路轨道-车辆系统高频瞬态仿真及波磨机理研究[D]. 北京: 中国铁道科学研究院, 2019.

    YU Miao. Transient simulation for high-speed track/vehicle system and study on rail corrugation[D]. Beijing: China Academy of Railway Sciences, 2019. (in Chinese)
    [52] 李响, 任尊松, 徐宁. 地铁小半径曲线段钢弹簧浮置板轨道的钢轨波磨研究[J]. 铁道学报, 2017, 39(8): 70-76. doi: 10.3969/j.issn.1001-8360.2017.08.010

    LI Xiang, REN Zun-song, XU Ning. Study on rail corrugation of steel spring floating slab track on subway with small radius curve track[J]. Journal of the China Railway Society, 2017, 39(8): 70-76. (in Chinese) doi: 10.3969/j.issn.1001-8360.2017.08.010
    [53] DANIEL W J T, HORWOOD R J, MEEHAN P A, et al. Analysis of rail corrugation in cornering[J]. Wear, 2008, 265(9/10): 1183-1192. http://www.sciencedirect.com/science/article/pii/S0043164808001415
    [54] 赵悦, 杨建伟, 刘传. 波磨故障下曲率半径对车轮扁疤冲击影响分析[J]. 北京建筑大学学报, 2019, 35(2): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-BJJZ201902008.htm

    ZHAO Yue, YANG Jian-wei, LIU Chuan. Analysis of influence of wave grinding on wheel flat impact under different curvature radius[J]. Journal of Beijing University of Civil Engineering and Architecture, 2019, 35(2): 53-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJJZ201902008.htm
    [55] SAULOT A, DESCARTES S, DESMYTER D, et al. A tribological characterization of the "damage mechanism" of low rail corrugation on sharp curved track[J]. Wear, 2006, 260(9/10): 984-995. http://www.sciencedirect.com/science/article/pii/S004316480500390X
    [56] 许黎明, 刘超, 赵鑫, 等. 全轮对曲线通过时的瞬态滚动接触行为模拟研究[J]. 工程力学, 2019, 36(11): 203-211.

    XU Li-ming, LIU Chao, ZHAO Xin, et al. Analyses of transient wheel-rail rolling contact behavior during curving[J]. Engineering Mechanics, 2019, 36(11): 203-211. (in Chinese)
    [57] 刘超, 赵鑫, 赵小罡, 等. 单侧钢轨波磨对两侧轮轨瞬态响应的影响分析[J]. 机械工程学报, 2017, 53(22): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201722016.htm

    LIU Chao, ZHAO Xin, ZHAO Xiao-gang, et al. Analyses of transient wheel-rail interactions excited by unilateral rail corrugation[J]. Journal of Mechanical Engineering, 2017, 53(22): 117-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201722016.htm
    [58] BOGACZ R, CZYCZUŁA W, KONOWROCKI R. Effect of periodicity of railway track and wheel-rail interaction on wheelset-track dynamics[J]. Archive of Applied Mechanics, 2015, 85: 1321-1330. doi: 10.1007/s00419-014-0981-4
    [59] 李伟, 温泽峰, 王衡禹, 等. 地铁钢轨波磨演化过程中的特性分析[J]. 机械工程学报, 2018, 54(4): 70-78. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804012.htm

    LI Wei, WEN Ze-feng, WANG Heng-yu, et al. Analysis on the evolution characteristics of rail corrugation on a metro[J]. Journal of Mechanical Engineering, 2018, 54(4): 70-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804012.htm
    [60] 李伟, 杜星, 王衡禹, 等. 地铁钢轨一种波磨机理的调查分析[J]. 机械工程学报, 2013, 49(16): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316005.htm

    LI Wei, DU Xing, WANG Heng-yu, et al. Investigation into the mechanism of type of rail corrugation of metro[J]. Journal of Mechanical Engineering, 2013, 49(16): 26-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316005.htm
    [61] 李伟, 曾全君, 朱士友, 等. 地铁钢轨波磨对车辆和轨道动态行为的影响[J]. 交通运输工程学报, 2015, 15(1): 34-42. doi: 10.3969/j.issn.1671-1637.2015.01.005

    LI Wei, ZENG Quan-jun, ZHU Shi-you, et al. Effect of metro rail corrugation on dynamic behaviors of vehicle and track[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 34-42. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.01.005
    [62] 崔晓璐, 钱韦吉, 张青, 等. 直线线路科隆蛋扣件地段钢轨波磨成因的理论研究[J]. 振动与冲击, 2016, 35(13): 114-118, 152. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201613019.htm

    CUI Xiao-lu, QIAN Wei-ji, ZHANG qing, et al. Forming mechanism of rail corrugation of a straight track section supported by Cologne-egg fasteners[J]. Journal of Vibration and Shock, 2016, 35(13): 114-118, 152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201613019.htm
    [63] 崔晓璐, 黄博, 陈光雄. 抑制轮轨摩擦自激振动的扣件结构多参数拟合研究[J]. 西南交通大学学报, 2021, 56(1): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202101009.htm

    CUI Xiao-lu, HUANG Bo, CHEN Guang-xiong. Research on multi-parameter fitting of fastener structures to suppress wheel-rail friction self-excited vibration[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202101009.htm
    [64] 任彤, 王安斌, 王志强, 等. 小半径曲线段钢轨短波波磨的影响因素分析[J]. 噪声与振动控制, 2018, 38(6): 105-108, 112. doi: 10.3969/j.issn.1006-1355.2018.06.020

    REN Tong, WANG An-bin, WANG Zhi-qiang, et al. Analysis of influencing factors on rail corrugation in small radius curved tracks[J]. Noise and Vibration Control, 2018, 38(6): 105-108, 112. (in Chinese) doi: 10.3969/j.issn.1006-1355.2018.06.020
    [65] 仲莹涵, 关庆华, 温泽峰, 等. 地铁钢轨波磨对轨道结构振动及减振特性影响[J]. 噪声与振动控制, 2017, 37(4): 85-89, 154. doi: 10.3969/j.issn.1006-1355.2017.04.017

    ZHONG Han-ying, GUAN Qing-hua, WEN Ze-feng, et al. Influence of metro rail corrugation on track system's vibration and mitigation characteristics[J]. Noise and Vibration Control, 2017, 37(4): 85-89, 154. (in Chinese) doi: 10.3969/j.issn.1006-1355.2017.04.017
    [66] 徐宁, 王岗, 张用兵, 等. 低速工况下浮轨扣件减振降噪及钢轨波磨分析[J]. 噪声与振动控制, 2018, 38(4): 213-216, 236. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201804042.htm

    XU Ning, WANG Gang, ZHANG Yong-bing, et al. Floating rail fastener vibration noise reduction and rail corrugation analysis in low speed condition[J]. Noise and Vibration Gontral, 2018, 38(4): 213-216, 236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201804042.htm
    [67] 雷震宇, 王志强, 李莉, 等. 地铁普通扣件钢轨波磨特性[J]. 同济大学学报(自然科学版), 2019, 47(9): 1334-1340. doi: 10.11908/j.issn.0253-374x.2019.09.014

    LEI Zhen-yu, WANG Zhi-Qiang, LI Li, et al. Rail corrugation characteristics of the common fastener track in metro[J]. Journal of Tongji University (Natural Science), 2019, 47(9): 1334-1340. (in Chinese) doi: 10.11908/j.issn.0253-374x.2019.09.014
    [68] 蔡小培, 钟阳龙, 郭亮武, 等. 钢轨波磨对剪切型减振器段振动影响试验[J]. 振动、测试与诊断, 2019, 39(2): 382-388, 448. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201902024.htm

    CAI Xiao-pei, ZHONG Yang-long, GUO Liang-wu, et al. Experimental study on effect of rail corrugation on structure vibration in egg fastener zone[J]. Journal of Vibration, Measurement and Diagnosis, 2019, 39(2): 382-388, 448. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201902024.htm
    [69] 王誉蓉, 吴天行. 高弹扣件轨道车轮间振动波的反射对钢轨短波长波磨的影响[J]. 振动与冲击, 2020, 39(6): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202006005.htm

    WANG Yu-rong, WU Tian-xing. Effects of vibration wave reflections between wheels and tracks with high-elastic fasteners on short pitch rail corrugation[J]. Journal of Vibration and Shock, 2020, 39(6): 29-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202006005.htm
    [70] WU B W, CHEN G X, LYU J Z, et al. Effect of the axlebox arrangement of the bogie and the primary suspension parameters on the rail corrugation at the sharp curve metro track[J]. Wear, 2019, 426/427: 1828-1836. doi: 10.1016/j.wear.2019.01.038
    [71] 张喻涵, 陈光雄, 赵晓男, 等. 车轮辐板形状与轨距对钢轨波磨的影响[J]. 润滑与密封, 2020, 45(2): 40-44. doi: 10.3969/j.issn.0254-0150.2020.02.008

    ZHANG Yu-han, CHEN Guang-xiong, ZHAO Xiao-nan, et al. Influence of wheel web shape and rail gauge on rail corrugation[J]. Lubrication Engineering, 2020, 45(2): 40-44. (in Chinese) doi: 10.3969/j.issn.0254-0150.2020.02.008
    [72] 夏晨光, 陈光雄, 朱旻昊, 等. 车轮辐板阻尼涂层对钢轨波磨的影响[J]. 表面技术, 2020, 49(3): 134-140. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202003018.htm

    XIA Chen-guang, CHEN Guang-xiong, ZHU Min-hao, et al. Effect of damped coating of wheel web on rail corrugation[J]. Surface Technology, 2020, 49(3): 134-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202003018.htm
    [73] 周信, 赵鑫, 韩健, 等. 波磨条件下地铁车轮瞬态滚动噪声特性研究[J]. 机械工程学报, 2018, 54(4): 196-202. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804029.htm

    ZHOU Xin, ZHAO Xin, HAN Jian, et al. Study on transient rolling noise characteristics of subway wheel with rail corrugation[J]. Journal of Mechanical Engineering, 2018, 54(4): 196-202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804029.htm
    [74] 刘卫丰, 张厚贵, 陈嘉梁, 等. 北京地铁采用调频式钢轨减振器治理钢轨波磨的试验研究[J]. 振动工程学报, 2019, 32(4): 695-700. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201904017.htm

    LIU Wei-feng, ZHANG Hou-gui, CHEN Jia-liang, et al. A test of treating rail corrugation by tuned rail damper for Beijing Metro[J]. Journal of Vibration Engineering, 2019, 32(4): 695-700. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201904017.htm
    [75] CHEN G X, ZHANG S, WU B W, et al. Field measurement and model prediction of rail corrugation[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(4): 095440971987731. http://www.researchgate.net/publication/336389645_Field_measurement_and_model_prediction_of_rail_corrugation
    [76] TENG Yun, LIU Hong-li, LIU Jian-wei, et al. A rail corrugation measurement method based on data splicing[J]. Measurement, 2020, 156: 107560. doi: 10.1016/j.measurement.2020.107560
    [77] WEI De-hua, WEI Xiu-kun, LIU Yu-xin, et al. The identification and assessment of rail corrugation based on computer vision[J]. Applied Sciences, 2019, 9(18): 3913. doi: 10.3390/app9183913
    [78] LI Jian-bo, SHI Hong-mei. Rail corrugation detection of high-speed railway using wheel dynamic responses[J]. Shock and Vibration, 2019, 2019: 2695647. http://www.researchgate.net/publication/331353628_Rail_Corrugation_Detection_of_High-Speed_Railway_Using_Wheel_Dynamic_Responses
    [79] HORY C, BOUILLAUT L, AKNIN P. Time-frequency characterization of rail corrugation under a combined auto-regressive and matched filter scheme[J]. Mechanical Systems and Signal Processing, 2012, 29: 174-186. doi: 10.1016/j.ymssp.2011.12.015
    [80] LU Jun, GAO Ming-yuan, WANG Yi-feng, et al. Health monitoring of urban rail corrugation by wireless rechargeable sensor nodes[J]. Structural Health Monitoring, 2019, 18(3): 147592171878239. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112885714.html
    [81] 吴波文, 陈光雄, 赵晓男, 等. 地铁先锋扣件地段钢轨波磨成因[J]. 西南交通大学学报, 2020, 55(3): 650-657. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202003025.htm

    WU Bo-wen, CHEN Guang-xiong, ZHAO Xiao-nan, et al. Formation mechanism of rail corrugation occurring on tight curved track with vanguard fasteners[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 650-657. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202003025.htm
    [82] 李霞, 吴磊, 温泽峰, 等. 整车无砟轨道钢轨波磨计算模型[J]. 机械工程学报, 2018, 54(4): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804013.htm

    LI Xia, WU Lei, WEN Ze-feng, et al. Rail corrugation model based on vehicle/non-ballast track[J]. Journal of Mechanical Engineering, 2018, 54(4): 79-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804013.htm
    [83] 刘学毅, 印洪. 钢轨波形磨耗的影响因素及减缓措施[J]. 西南交通大学学报, 2002, 37(5): 483-487. doi: 10.3969/j.issn.0258-2724.2002.05.001

    LIU Xue-yi, YIN Hong. Rail corrugations: influencing factors and retarding measures[J]. Journal of Southwest Jiaotong University, 2002, 37(5): 483-487. (in Chinese) doi: 10.3969/j.issn.0258-2724.2002.05.001
    [84] 樊文刚, 程继发, 吕洪宾, 等. 波浪型面钢轨砂带打磨时变接触行为与仿真研究[J]. 机械工程学报, 2018, 54(4): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804014.htm

    FAN Wen-gang, CHENG Ji-fa, LYU Hong-bin, et al. Research on time-varying contact behavior and simulation for waved rail surface grinding by abrasive belt[J]. Journal of Mechanical Engineering, 2018, 54(4): 87-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804014.htm
    [85] TANAKA H, MIWA M. Modeling the development of rail corrugation to schedule a more economical rail grinding[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(4): 370-380. doi: 10.1177/0954409719894833
    [86] 杨逸航. 钢轨打磨对小半径曲线车辆动力学特性分析[J]. 铁道机车车辆, 2019, 39(4): 73-78, 115. doi: 10.3969/j.issn.1008-7842.2019.04.16

    YANG Yi-hang. Analysis of rail grinding on vehicle dynamics characteristics with small radius curve[J]. Railway Locomotive and Car, 2019, 39(4): 73-78, 115. (in Chinese) doi: 10.3969/j.issn.1008-7842.2019.04.16
    [87] 程蕾, 王旭华, 朱元昌, 等. 新兖线小半径曲线钢轨波磨病害整治[J]. 铁道技术监督, 2019, 47(6): 45-48, 58. doi: 10.3969/j.issn.1006-9178.2019.06.012

    CHEN Lei, WANG Xu-hua, ZHU Yuan-chang, et al. Treatment of corrugation of small radius curved rails on Xinyan Railway[J]. Railway Quality Control, 2019, 47(6): 45-48, 58. (in Chinese) doi: 10.3969/j.issn.1006-9178.2019.06.012
    [88] 任娟娟, 赵华卫, 欧阳明. 高速铁路钢轨打磨对轮轨接触关系的影响[J]. 华中科技大学学报(自然科学版), 2016, 44(4): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201604019.htm

    REN Juan-juan, ZHAO Hua-wei, OUYANG Ming. Influence of rail grinding on wheel-rail contact relationship for high-speed railway[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(4): 95-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201604019.htm
    [89] 金学松, 杜星, 郭俊, 等. 钢轨打磨技术研究进展[J]. 西南交通大学学报, 2010, 45(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201001002.htm

    JIN Xue-song, DU Xin, GUO Jun, et al. State of arts of research on rail grinding[J]. Journal of Southwest Jiaotong University, 2010, 45(1): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201001002.htm
    [90] WU T X. Effects on short pitch rail corrugation growth of a rail vibration absorber/damper[J]. Wear, 2011, 271(1/2): 339-348. http://www.sciencedirect.com/science/article/pii/S0043164810003741
    [91] 文永蓬, 李琼, 尚慧琳, 等. 考虑车轨耦合作用的车体动力吸振器减振性能研究[J]. 振动与冲击, 2016, 35(21): 53-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201621010.htm

    WEN Yong-peng, LI Qiong, SHANG Hui-lin, et al. Performances of dynamic absorbers for urban rail vehicle body considering effects of vehicle-track coupling[J]. Journal of Vibration and Shock, 2016, 35(21): 53-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201621010.htm
    [92] 文永蓬, 纪忠辉, 翁琳, 等. 双重钢轨吸振器对轨道系统的振动抑制研究[J]. 机械工程学报, 2020, 56(12): 184-195. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202012023.htm

    WEN Yong-peng, JI Zhong-hui, WENG Lin, et al. Study on vibration suppression of track system via double rail vibration absorber[J]. Journal of Mechanical Engineering, 2020, 56(12): 184-195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202012023.htm
    [93] 宗志祥, 文永蓬, 尚慧琳, 等. 城轨车辆车体多重动力吸振器减振方法研究[J]. 振动与冲击, 2020, 39(2): 154-162. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202002022.htm

    ZONG Zhi-xiang, WEN Yong-peng, SHANG Hui-lin, et al. Design method for multiple dynamic absorbers to reduce the vibration of an urban rail vehicle body[J]. Journal of Vibration and Shock, 2020, 39(2): 154-162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202002022.htm
    [94] 钱韦吉, 黄志强. 蠕滑力饱和条件下钢轨吸振器抑制短波波磨的理论研究[J]. 振动与冲击, 2019, 38(14): 68-73, 111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201914010.htm

    QIAN Wei-ji, HUANG Zhi-qiang. Theoretical study on the suppression of short pitch rail corrugation induced vibration by rail vibration absorbers under saturated creep forces condition[J]. Journal of Vibration and Shock, 2019, 38(14): 68-73, 111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201914010.htm
    [95] ZHAO Cai-you, WANG Ping, XING Meng-ting, et al. Research on the matching of fastener stiffness based on wheel-rail contact mechanism for prevention of rail corrugation[J]. Mathematical Problems in Engineering, 2017, 2017: 6748160.
    [96] 尤泰文, 周劲松, 孙维光, 等. 多重动力吸振器对高速列车地板振动的控制[J]. 同济大学学报(自然科学版), 2020, 48(4): 583-590. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202004015.htm

    YOU Tai-wen, ZHOU Jin-song, SUN Wei-guang, et al. Floor local vibration control of high speed trains by using multiple dynamic vibration absorbers[J]. Journal of Tongji University (Natural Science), 2020, 48(4): 583-590. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202004015.htm
    [97] 吴天行. 轨道减振器与弹性支承块或浮置板轨道组合的隔振性能分析[J]. 振动工程学报, 2007, 20(5): 489-493. doi: 10.3969/j.issn.1004-4523.2007.05.011

    WU Tian-xing. On effectiveness of vibration isolation for super-elastic rail support combined with booted sleeper or floating slab track[J]. Journal of Vibration Engineering, 2007, 20(5): 489-493. (in Chinese) doi: 10.3969/j.issn.1004-4523.2007.05.011
    [98] 王平, 刘奕斌, 高原, 等. 表面选区强化对钢轨波磨处轮轨滚动接触行为的影响[J]. 铁道学报, 2020, 42(5): 105-112. doi: 10.3969/j.issn.1001-8360.2020.05.014

    WANG Ping, LIU Yi-bin, GAO Yuan, et al. A study on influence of surface strengthening on wheel-rail rolling contact behavior at rail corrugation[J]. Journal of the China Railway Society, 2020, 42(5): 105-112. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.05.014
    [99] 肖祥龙, 陈光雄, 莫继良, 等. 摩擦调节剂抑制钢轨波磨的机理研究[J]. 振动与冲击, 2013, 32(8): 166-170. doi: 10.3969/j.issn.1000-3835.2013.08.029

    XIAO Xiang-long, CHEN Guang-xiong, MO Ji-liang, et al. Mechanism for friction to suppress a wear-type rail corrugation[J]. Journal of Vibration and Shock, 2013, 32(8): 166-170. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.08.029
    [100] GRASSIE S L. Rail corrugation: advances in measurement, understanding and treatment[J]. Wear, 2005, 258(7/8): 1224-1234. http://www.sciencedirect.com/science/article/pii/S004316480400290X
    [101] GRASSIE S L. A practical methodology to prioritise reprofiling sites for corrugation removal[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(4): 095440971985307. http://www.researchgate.net/publication/334026554_A_practical_methodology_to_prioritise_reprofiling_sites_for_corrugation_removal
    [102] 谷永磊. 高速铁路无砟轨道钢轨波浪形磨损机理研究[D]. 北京: 北京交通大学, 2017.

    GU Yong-lei. Study on the mechanism of rail corrugation on high-speed railway unballasted track[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese)
    [103] 朱海燕, 胡华涛, 尹必超, 等. 轨道车辆车轮多边形研究进展[J]. 交通运输工程学报, 2020, 20(1): 102-119. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001011.htm

    ZHU Hai-yan, HU Hua-tao, YIN Bi-chao, et al. Research progress on wheel polygons of rail vehicles[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 102-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001011.htm
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  1873
  • HTML全文浏览量:  486
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-25
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回