留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车风阻制动试验方法综述

田春 翁晶晶 吴萌岭 左建勇

田春, 翁晶晶, 吴萌岭, 左建勇. 高速列车风阻制动试验方法综述[J]. 交通运输工程学报, 2021, 21(6): 94-105. doi: 10.19818/j.cnki.1671-1637.2021.06.007
引用本文: 田春, 翁晶晶, 吴萌岭, 左建勇. 高速列车风阻制动试验方法综述[J]. 交通运输工程学报, 2021, 21(6): 94-105. doi: 10.19818/j.cnki.1671-1637.2021.06.007
TIAN Chun, WENG Jing-jing, WU Meng-ling, ZUO Jian-yong. Review on test methods of aerodynamic brake for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 94-105. doi: 10.19818/j.cnki.1671-1637.2021.06.007
Citation: TIAN Chun, WENG Jing-jing, WU Meng-ling, ZUO Jian-yong. Review on test methods of aerodynamic brake for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 94-105. doi: 10.19818/j.cnki.1671-1637.2021.06.007

高速列车风阻制动试验方法综述

doi: 10.19818/j.cnki.1671-1637.2021.06.007
基金项目: 

国家自然科学基金项目 52072266

详细信息
    作者简介:

    田春(1977-),女,湖北荆门人,同济大学副教授,工学博士,从事列车制动与安全技术研究

  • 中图分类号: U270.1

Review on test methods of aerodynamic brake for high-speed train

Funds: 

National Natural Science Foundation of China 52072266

More Information
  • 摘要: 针对高速列车风阻制动试验方法缺少统一标准的问题,从气动特性和装置工作特性两方面系统梳理了风阻制动的相关成果与进展;分析了风翼板形状、尺寸、安装位置和间距对气动特性的影响,装置结构、工作原理和配置对工作特性的影响,阐明了制动系统性能的试验需求;分析了风阻制动对车上其他设备、轮轨/磁浮列车运行稳定性、气动噪声的影响,阐明了风阻制动运行影响性的试验需求;分析了物体撞击、平均风载荷和脉动风载荷对风阻制动装置的影响,以及风阻制动装置安装对车体结构强度的影响,阐明了风阻制动结构强度的试验需求。研究结果表明:随着新型复合材料风翼板的应用,需采用高速摄影机记录等方式获取更详细的鸟撞试验过程信息;风载荷试验便于模拟验证不同运行工况下装置的制动能力、强度和气动噪声,但受空间和成本的限制,难以进行制动系统和车体的试验;线路试验可以验证制动性能、运行影响性和结构强度,但受天气条件影响,难以模拟所有运行工况,未来需进一步研究风阻制动的标准试验方法,探索不同装置位置、运行工况和故障状态下地面风载荷试验和线路试验模拟方法,完善试验结果的评价标准。

     

  • 图  1  风阻制动原理

    Figure  1.  Aerodynamic braking principle

    图  2  制动力-速度曲线

    Figure  2.  Curves of braking force and velocity

    图  3  风阻制动力变化规律

    Figure  3.  Variation rule of aerodynamic braking force

    图  4  不同型式风阻制动装置

    Figure  4.  Different types of aerodynamic braking devices

    图  5  风阻制动装置尺寸设计限制

    Figure  5.  Design limits of aerodynamic braking device sizes

    图  6  风阻制动装置风洞试验结果

    Figure  6.  Wind-tunnel test result of aerodynamic braking device

    图  7  风阻制动试验的需求和内容

    Figure  7.  Demands and contents of aerodynamic braking tests

    图  8  静载荷试验设计流程

    Figure  8.  Design flow of static load test

    图  9  风阻制动动载荷试验

    Figure  9.  Dynamic load tests of aerodynamic brake

    图  10  动载荷试验风压测量

    Figure  10.  Wind pressure measurements in dynamic load test

    图  11  鸟撞试验中应变片的布置

    Figure  11.  Layout of strain gauges in bird striking test

    表  1  风阻制动装置的开启方式、运行开启方向和车辆配置

    Table  1.   Opening modes, operation opening directions and vehicle configurations of aerodynamic braking devices

    列车型号 开启方式 运行开启方向 车辆配置
    日本MLU001 内外驱动结合(液压) 双向 每辆车1套
    日本MLU002N 内外驱动结合(弹簧力) 单向 每个方向2套
    日本MLX01(单板式) 内外驱动结合(液压) 双向 每辆车1套
    日本MLX01(双板式) 内外驱动结合(液压) 双向 每辆车1套
    日本MLX01(升降式) 内驱动 双向 头车2套,中间车1套
    日本FASTECH360 内驱动 双向 每辆车端部1套
    日本ALFA-X 内外驱动结合(弹簧力) 双向 根据车顶空间布置
    中国CIT500 内驱动 单向 2、3、5车各1套
    下载: 导出CSV

    表  2  风阻制动装置的制动力

    Table  2.   Braking forces of aerodynamic braking devices

    列车型号 装置位置 面积/m2 风阻制动力/kN 单位面积力/kPa
    MLU002N 首套 1.96 19.0 9.7
    第2套 1.96 16.0 8.2
    MLX01(单板式) 首套 1.95 14.0 7.2
    第2套及后几套 1.95 10.5 5.4
    MLX01(双板式) 首套 2.40 15.6 6.5
    第2套及后几套 2.40 15.6 6.5
    ALFA-X 首套 0.25 1.3 5.2
    CIT500 首套 0.85 4.0 4.7
    下载: 导出CSV

    表  3  MLX01车风阻制动力估计值和试验结果

    Table  3.   Estimated and test results of aerodynamic braking forces of MLX01

    装置型式 装置位置 估计值/kPa 试验值/kPa
    单板 首套 19.5 20
    第2套及后几套 11.0 15
    双板 首套 16.3 18
    第2套及后几套 9.1 18
    下载: 导出CSV

    表  4  风阻制动试验目的

    Table  4.   Test objects of aerodynamic brake

    试验名称 试验目的
    风载荷试验 验证风阻制动装置的制动能力、功能特性、静强度和动强度,测量装置工作时的气动噪声
    鸟撞试验 验证风翼板抗鸟撞性能
    线路试验 验证风阻制动系统性能和装置结构强度,测量运行数据进行运行影响性分析
    下载: 导出CSV
  • [1] 吴萌岭, 马天和, 田春, 等. 列车制动技术发展趋势探讨[J]. 中国铁道科学, 2019, 40(1): 134-144. doi: 10.3969/j.issn.1001-4632.2019.01.18

    WU Meng-ling, MA Tian-he, TIAN Chun, et al. Discussion on development trend of train braking technology[J]. China Railway Science, 2019, 40(1): 134-144. (in Chinese) doi: 10.3969/j.issn.1001-4632.2019.01.18
    [2] MEINS J, MILLER L, MAYER W J. The high speed maglev transport system transrapid[J]. IEEE Transactions on Magnetics, 1988, 24(2): 808-811. doi: 10.1109/20.11347
    [3] HE J L, ROTE D M, COFFEY H T. Survey of foreign maglev systems[R]. Argonne: Argonne National Laboratory, 1992.
    [4] OBARA T, KUMAGAI N, TAKIGUCHI T. Development of hybrid rail brake[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1995, 209(2): 61-65. doi: 10.1243/PIME_PROC_1995_209_257_02
    [5] 陈爱芬. ICE 3率先采用轨道涡流制动运营[J]. 国外铁道车辆, 2001, 38(4): 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD200104012.htm

    CHEN Ai-fen. ICE 3 pioneers application of eddy-current rail brakes[J]. Foreign Rolling Stock, 2001, 38(4): 37-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD200104012.htm
    [6] 林台平, 林晖. 电磁轨道制动装置的研究[J]. 中国铁道科学, 1997, 18(1): 16-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK701.001.htm

    LIN Tai-ping, LIN Hui. Study of electro-magnetic track brake equipment for railway[J]. China Railway Science, 1997, 18(1): 16-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK701.001.htm
    [7] TANIGUCHI M. The Japanese magnetic levitation trains[J]. Built Environment, 1993, 19(3): 234-243.
    [8] HE J L, ROTE D M, COFFEY H T. Study of Japanese electrodynamic-suspension maglev systems[R]. Argonne: Argonne National Laboratory, 1994.
    [9] ARAI H, KANNO S, FUJINO K, et al. Development of a brake system for shinkansen speed increase[J]. JR East Technical Review, 2010, 16: 17-21.
    [10] NAGASAKI Y, KOKAGO R, NAKAMURA M, et al. Auxiliary power unit of series E956 high-speed experimental shinkansen train for East Japan Railway Company[J]. Toyo Denki Technical Journal, 2021(143): 10-19.
    [11] 苗秀娟, 梁习锋. 高速列车空气制动板的研究[C]//中国空气动力学学会, 2004年度中国工业空气动力学学术论文集. 北京: 中国空气动力学学会, 2004: 137-141.

    MIAO Xiu-juan, LIANG Xi-feng. Research on air brake board of high-speed train[C]//Industrial Aerodynamics Conference. 2004 Industrial Aerodynamics Conference. Beijing: Industrial Aerodynamics Conference, 2004: 137-141. (in Chinese)
    [12] 崔涛, 张卫华. 翼板制动气动性能数值分析[J]. 铁道机车车辆, 2009, 29(6): 1-2, 27. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200906000.htm

    CUI Tao, ZHANG Wei-hua. Aerodynamic quality analysis of wing plate brake[J]. Railway Locomotive and Car, 2009, 29(6): 1-2, 27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200906000.htm
    [13] 田春, 吴萌岭, 任利惠, 等. 空气动力制动研究初探[J]. 铁道车辆, 2009, 47(3): 10-12, 47. doi: 10.3969/j.issn.1002-7602.2009.03.003

    TIAN Chun, WU Meng-ling, REN Li-hui, et al. Initial discussion of research in aerodynamic brake[J]. Rolling Stock, 2009, 47(3): 10-12, 47. (in Chinese) doi: 10.3969/j.issn.1002-7602.2009.03.003
    [14] PUHARIĆ M, MATIĆ D, LINIĆ S, et al. Determination of braking force on the aerodynamic brake by numerical simulations[J]. FME Transactions, 2014, 42(2): 106-111. doi: 10.5937/fmet1402106P
    [15] LEE M, BHANDARI B. Theapplication of aerodynamic brake for high-speed trains[J]. Journal of Mechanical Science and Technology, 2018, 32(12): 5749-5754. doi: 10.1007/s12206-018-1122-8
    [16] YOSHIMURA M, SAITO S, HOSAKA S, et al. Characteristics of the aerodynamic brake of the vehicle on the Yamanashi maglev test line[J]. Quarterly Report of RTRI, 2000, 41(2): 74-78. doi: 10.2219/rtriqr.41.74
    [17] 田春, 吴萌岭, 费巍巍, 等. 空气动力制动制动风翼纵向位置制动力规律[J]. 同济大学学报(自然科学版), 2011, 39(5): 705-709. doi: 10.3969/j.issn.0253-374x.2011.05.014

    TIAN Chun, WU Meng-ling, FEI Wei-wei, et al. Rule of aerodynamics braking force in longitudinal different position of high-speed train[J]. Journal of Tongji University (Natural Science), 2011, 39(5): 705-709. (in Chinese) doi: 10.3969/j.issn.0253-374x.2011.05.014
    [18] 田春, 吴萌岭, 朱洋永, 等. 空气动力制动风翼在车上布置数值仿真研究[J]. 中国铁道科学, 2012, 33(3): 98-101. doi: 10.3969/j.issn.1001-4632.2012.03.16

    TIAN Chun, WU Meng-ling, ZHU Yang-yong, et al. Numerical simulation research on the arrangement of the aerodynamic braking plates in the train[J]. China Railway Science, 2012, 33(3): 98-101. (in Chinese) doi: 10.3969/j.issn.1001-4632.2012.03.16
    [19] 高立强, 奚鹰, 王国华, 等. 基于CFD的高速列车空气动力制动风翼板型研究[J]. 中国工程机械学报, 2015, 13(3): 236-241. doi: 10.3969/j.issn.1672-5581.2015.03.009

    GAO Li-qiang, XI Ying, WANG Guo-hua, et al. CFD-based study on aerodynamic brake wind-panel forms for high-speed trfferain[J]. Chinese Journal of Construction Machinery, 2015, 13(3): 236-241. (in Chinese) doi: 10.3969/j.issn.1672-5581.2015.03.009
    [20] 高立强, 胡雄, 孙德建, 等. 空气动力制动前排风翼板制动力影响规律[J]. 铁道学报, 2018, 40(1): 31-37. doi: 10.3969/j.issn.1001-8360.2018.01.005

    GAO Li-qiang, HU Xiong, SUN De-jian, et al. Influence rule of aerodynamics braking force from the front brake panel[J]. Journal of the China Railway Society, 2018, 40(1): 31-37. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.01.005
    [21] TAKAMI H. Development of small-size and light-weight aerodynamic brake for high-speed railway[J]. Transactions of the Japan Society of Mechanical Engineers, Part B, 2020, 86(881): 19-295.
    [22] TAKAMI H, MAEKAWA H. Characteristics of awind-actuated aerodynamic braking device for high-speed trains[J]. Journal of Physics: Conference Series, 2017, 822(1): 012061.
    [23] TAKAMI H. Development of small-sized aerodynamic brake for high-speed railway[J]. Transactions of the Japan Society of Mechanical Engineers, Part B, 2013, 79(803): 1254-1263. doi: 10.1299/kikaib.79.1254
    [24] NIU Ji-qiang, WANG Yue-ming, WU Dan, et al. Comparison of different configurations of aerodynamic braking plate on the flow around a high-speed train[J]. Engineering Applications of Computational Fluid Mechanics, 2020, 14(1): 655-668. doi: 10.1080/19942060.2020.1756414
    [25] NIU Ji-qiang, WANG Yue-ming, LIU Feng, et al. Numerical study on the effect of a downstream braking plate on the detailed flow field and unsteady aerodynamic characteristics of an upstream braking plate with or without a crosswind[J]. Vehicle System Dynamics, 2021, 59(5): 657-674. doi: 10.1080/00423114.2019.1708959
    [26] NIU Ji-qiang, WANG Yue-ming, LI Rui, et al. Comparison of aerodynamic characteristics of high-speed train for different configurations of aerodynamic braking plates installed in inter-car gap region[J]. Flow, Turbulence and Combustion, 2021, 106(1): 139-161. doi: 10.1007/s10494-020-00196-0
    [27] 孙文静, 田春, 周劲松, 等. 高速列车空气动力制动会车动力学性能[J]. 同济大学学报(自然科学版), 2014, 42(9): 1401-1407. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201409016.htm

    SUN Wen-jing, TIAN Chun, ZHOU Jin-song, et al. Dynamics performance of high-speed train with aerodynamic brake under crossing[J]. Journal of Tongji University (Natural Science), 2014, 42(9): 1401-1407. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201409016.htm
    [28] ZHAI Ju-jia, NIU Ji-qiang, WANG Yue-ming, et al. Unsteady flow and aerodynamic behavior of high-speed train braking plates with and without crosswinds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104309. doi: 10.1016/j.jweia.2020.104309
    [29] SAWADA K. Development of magnetically levitated high speed transport system in Japan[J]. IEEE Transactions on Magnetics, 1996, 32(4): 2230-2235. doi: 10.1109/20.508609
    [30] SHIRAKUNI N, ENDO Y, TAKAHASHI K, et al. Overview of new vehicles for the Yamanashi maglev test line[C]//The International Maglev Board. Proceedings of the 17th international conference on magnetically levitated systems. Munich: The International Maglev Board, 2002: 05104.
    [31] 吉村正文. 宫崎试验线车辆空气动力制动装置的开发[J]. 国外铁道车辆, 1996(5): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD605.010.htm

    MASAFUMI Y. Development of aerodynamic brake of Miyazaki maglev test line vehicle[J]. Foreign Rolling Stock, 1996(5): 44-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD605.010.htm
    [32] ZUO Jian-yong, WU Meng-ling, TIAN Chun, et al. Aerodynamic braking device for high-speed trains: design, simulation and experiment[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228(3): 260-270. doi: 10.1177/0954409712471620
    [33] 李瑞平, 周宁, 张卫华, 等. 受电弓气动抬升力计算方法与分析[J]. 铁道学报, 2012, 34(8): 26-32. doi: 10.3969/j.issn.1001-8360.2012.08.005

    LI Rui-ping, ZHOU Ning, ZHANG Wei-hua, et al. Calculation and analysis of pantograph aerodynamic uplift force[J]. Journal of the China Railway Society, 2012, 34(8): 26-32. (in Chinese) doi: 10.3969/j.issn.1001-8360.2012.08.005
    [34] 刘杰, 李人宪, 陈琳, 等. 高速列车空调系统及车内流场分析[J]. 西南交通大学学报, 2012, 47(1): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201201024.htm

    LIU Jie, LI Ren-xian, CHEN Lin, et al. Analysis of air flow field in air conditioning system and compartments of high-speed trains[J]. Journal of Southwest Jiaotong University, 2012, 47(1): 127-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201201024.htm
    [35] 田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6(1): 1-9. doi: 10.3321/j.issn:1671-1637.2006.01.001

    TIAN Hong-qi. Study evolvement of train aerodynamics in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 1-9. (in Chinese) doi: 10.3321/j.issn:1671-1637.2006.01.001
    [36] 沈志云. 高速列车的动态环境及其技术的根本特点[J]. 铁道学报, 2006(4): 1-5. doi: 10.3321/j.issn:1001-8360.2006.04.001

    SHEN Zhi-yun. Dynamic environment of high-speed train and its distinguished technology[J]. Journal of the China Railway Society, 2006(4): 1-5. (in Chinese) doi: 10.3321/j.issn:1001-8360.2006.04.001
    [37] 郭薇薇, 夏禾, 徐幼麟. 风荷载作用下大跨度悬索桥的动力响应及列车运行安全分析[J]. 工程力学, 2006(2): 103-110. doi: 10.3969/j.issn.1000-4750.2006.02.018

    GUO Wei-wei, XIA He, XU You-lin. Dynamic response of long span suspension bridge and running safety of train under wind action[J]. Engineering Mechanics, 2006(2): 103-110. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.02.018
    [38] WANG Xiao-liang, WANG Fu-xin, LI Ya-lin. Aerodynamic characteristics of high-lift devices with downward deflection of spoiler[J]. Journal of Aircraft, 2011, 48(2): 730-735. doi: 10.2514/1.C031301
    [39] ZHU Ji-hong, ZHANG Wei-hong, XIA Liang. Topology optimization in aircraft and aerospace structures design[J]. Archives of Computational Methods in Engineering, 2016, 23(4): 595-622. doi: 10.1007/s11831-015-9151-2
    [40] LIU Jie, OU Hai-feng, HE Jun-feng, et al. Topological design of a lightweight sandwich aircraft spoiler[J]. Materials, 2019, 12(19): 3225. doi: 10.3390/ma12193225
    [41] 金朋, 宋笔锋, 钟小平, 等. 基于几何因子的复合材料层合板颤振特性[J]. 复合材料学报, 2015, 32(6): 1814-1823. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201506035.htm

    JIN Peng, SONG Bi-feng, ZHONG Xiao-ping, et al. Flutter characteristic of composite laminates with lamination parameters[J]. Acta Materiae Compositae Sinica, 2015, 32(6): 1814-1823. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201506035.htm
    [42] GAND F. Zonaldetached eddy simulation of a civil aircraft with a deflected spoiler[J]. AIAA Journal, 2012, 51(3): 697-706.
    [43] TIAN Yun, FENG Pei-hua, LIU Pei-qing, et al. Spoiler upward deflection on transonic buffet control of supercritical airfoil and wing[J]. Journal of Aircraft, 2017, 54(3): 1229-1233.
    [44] 左建勇, 朱晓宇, 吴萌岭. 高速列车风阻制动风翼抗鸟撞分析[J]. 振动与冲击, 2014, 33(22): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201422006.htm

    ZUO Jian-yong, ZHU Xiao-yu, WU Meng-ling. Numerical analysis of anti-bird impact performance of aerodynamic brake wing on high-speed train[J]. Journal of Vibration and Shock, 2014, 33(22): 30-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201422006.htm
    [45] 管公顺, 张伟, 庞宝君, 等. 铝球弹丸高速正撞击薄铝板穿孔研究[J]. 高压物理学报, 2005, 19(2): 132-138. doi: 10.3969/j.issn.1000-5773.2005.02.006

    GUAN Gong-shun, ZHANG Wei, PANG Bao-jun, et al. A study of penetration hole diameter in thin Al-plate by hypervelocity impact of Al-spheres[J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 132-138. (in Chinese) doi: 10.3969/j.issn.1000-5773.2005.02.006
    [46] 张伟, 马文来, 马志涛, 等. 弹丸超高速撞击铝靶成坑数值模拟[J]. 高压物理学报, 2006, 20(1): 1-5. doi: 10.3969/j.issn.1000-5773.2006.01.001

    ZHANG Wei, MA Wen-lai, MA Zhi-tao, et al. Numerical simulation of craters produced by projectile hypervelocity impact on aluminum targets[J]. Chinese Journal of High Pressure Physics, 2006, 20(1): 1-5. (in Chinese) doi: 10.3969/j.issn.1000-5773.2006.01.001
    [47] 于连超, 陈伟, 关玉璞, 等. 复合材料层合板鸟撞损伤及吸能影响因素数值分析[J]. 航空动力学报, 2008, 23(6): 1106-1110. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200806025.htm

    YU Lian-chao, CHEN Wei, GUAN Yu-pu, et al. Numerical analysis of the damage of bird impaction against composite laminates and the influence factors on absorbing energy[J]. Journal of Aerospace Power, 2008, 23(6): 1106-1110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200806025.htm
    [48] GEORGIADIS S, GUNNION A J, THOMSON R S, et al. Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge[J]. Composite Structures, 2008, 86(1): 258-268.
    [49] 刘权良, 尹伟, 夏峰. 飞机结构静强度试验支持方案的确定[J]. 航空科学技术, 2012(5): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201205012.htm

    LIU Quan-liang, YIN Wei, XIA Feng. The determination of support scheme for aircraft static strength verification test[J]. Aeronautical Science and Technology, 2012(5): 32-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201205012.htm
    [50] 刘玮, 滕青, 刘冰. 基于地板结构的机身双层双向加载技术[J]. 航空学报, 2018, 39(5): 136-143. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201805012.htm

    LIU Wei, TENG Qing, LIU Bing. Double-deck bi-directional loading technology based on airliner cabin floor structure[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 136-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201805012.htm
    [51] LOKOS W, OLNEY C, CHEN T, et al. Strain-gage loads calibration testing of the active aeroelastic wing F/A-18 aircraft[C]// American Institute of Aeronautics and Astronautics. 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: American Institute of Aeronautics and Astronautics, 2002: 210726.
    [52] 郭琼, 郑建军, 刘玮. 大型客机机翼"双梁"式胶布带轻量模块化加载技术[J]. 工程与试验, 2020, 60(1): 12-13, 23. doi: 10.3969/j.issn.1674-3407.2020.01.006

    GUO Qiong, ZHENG Jian-jun, LIU Wei. Light weight modular loading technology of double-beam loading tape on the wing for large airliner[J]. Engineering and Test, 2020, 60(1): 12-13, 23. (in Chinese) doi: 10.3969/j.issn.1674-3407.2020.01.006
    [53] HAND M M, SIMMS D A, FINGERSH L J, et al. Unsteady aerodynamics experiment phase Ⅵ: wind tunnel test configurations and available data campaigns[R]. Colorado: National Renewable Energy Laboratory, 2001.
    [54] 奚鹰, 高立强, 王国华, 等. 基于CFD空气动力制动风载荷试验台仿真设计[J]. 机械设计, 2015, 32(9): 12-18. doi: 10.3969/j.issn.1001-3997.2015.09.004

    XI Ying, GAO Li-qiang, WANG Guo-hua, et al. Simulation design on the aerodynamic wind load test bed based on CFD[J]. Journal of Machine Design, 2015, 32(9): 12-18. (in Chinese) doi: 10.3969/j.issn.1001-3997.2015.09.004
    [55] 武存浩, 杨嘉陵, 臧曙光, 等. 鸟撞高速摄影试验与过程研究[J]. 北京航空航天大学学报, 2001, 27(3): 332-335. doi: 10.3969/j.issn.1001-5965.2001.03.022

    WU Cun-hao, YANG Jia-ling, ZANG Shu-guang, et al. Study of bird impact loading model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(3): 332-335. (in Chinese) doi: 10.3969/j.issn.1001-5965.2001.03.022
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  1308
  • HTML全文浏览量:  667
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-25
  • 网络出版日期:  2022-02-11
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回