留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水路交通技术发展趋势

严新平 贺亚鹏 贺宜 范爱龙 刘佳仑 张笛

严新平, 贺亚鹏, 贺宜, 范爱龙, 刘佳仑, 张笛. 水路交通技术发展趋势[J]. 交通运输工程学报, 2022, 22(4): 1-9. doi: 10.19818/j.cnki.1671-1637.2022.04.001
引用本文: 严新平, 贺亚鹏, 贺宜, 范爱龙, 刘佳仑, 张笛. 水路交通技术发展趋势[J]. 交通运输工程学报, 2022, 22(4): 1-9. doi: 10.19818/j.cnki.1671-1637.2022.04.001
YAN Xin-ping, HE Ya-peng, HE Yi, FAN Ai-long, LIU Jia-lun, ZHANG Di. Development trends of waterway transportation technology[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 1-9. doi: 10.19818/j.cnki.1671-1637.2022.04.001
Citation: YAN Xin-ping, HE Ya-peng, HE Yi, FAN Ai-long, LIU Jia-lun, ZHANG Di. Development trends of waterway transportation technology[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 1-9. doi: 10.19818/j.cnki.1671-1637.2022.04.001

水路交通技术发展趋势

doi: 10.19818/j.cnki.1671-1637.2022.04.001
基金项目: 

国家自然科学基金项目 51920105014

工信部绿色智能内河船舶创新专项 MC-202002-C01

详细信息
    作者简介:

    严新平(1959-), 男, 江西莲花人, 中国工程院院士, 武汉理工大学教授, 工学博士, 从事交通系统安全性、智能化和绿色技术研究

  • 中图分类号: U664

Development trends of waterway transportation technology

Funds: 

National Natural Science Foundation of China 51920105014

Green and Intelligent Inland River Ship Innovation Project of MIIT MC-202002-C01

More Information
    Author Bio:

    YAN Xin-ping(1959-), male, academician of Chinese Academy of Engineering, professor, PhD, xpyan@whut.edu.cn

  • 摘要: 对水路交通技术趋势相关文献开展文献计量分析,从主要研究国家、作者与关键词等方面梳理了研究脉络;综合国内外水路交通发展指导政策、前瞻报告与典型案例,分析并总结了水路交通技术发展现状,研判了未来水路交通技术发展趋势。研究结果表明: 水路交通技术将朝着以下5个方向发展。在水路运载工具方面,运输船舶逐步少人化,内河、近海、深远海船舶发展趋于谱系化;在航运基础设施方面,航道设施、能源供给、信息网络发展趋于一体化,并且船岸协同能力增强,船舶远程操控可实现,岸基船舶控制中心建设成为水运基础设施重要组成部分;在船舶动力方面,日趋严格的减排目标推动船用清洁能源发展,船舶动力系统将呈现多能源化和电动化;在船舶航行方面,多船协同运输可提高运输效率,内河、近海船舶编队航行成为运输新模式;在海事监管与安全方面,智能系统的应用使船舶人因事故逐步降低,智能无人系统救援成为现实。研究成果可以有效指导水路交通系统的未来规划、设计、建设与应用,为培育和发展水运新业态,逐步实现未来新一代航运系统提供有力支撑。

     

  • 图  1  水路交通技术文献的可视化图谱

    Figure  1.  Visualization map of literatures on waterway transportation technology

    图  2  水路交通技术主要研究国家共现图谱

    Figure  2.  Co-occurrence map of major research countries on waterway transportation technology

    图  3  水路交通技术前10位作者共现图谱

    Figure  3.  Co-occurrence map of top 10 authors on waterway transportation technology

    图  4  智能辅助驾驶系统

    Figure  4.  Intelligent assisted driving system

    图  5  岸基船舶控制中心概念

    Figure  5.  Concept of shore-based ship control centre

    图  6  多船自主协同编队航行仿真

    Figure  6.  Simulation of multi-ship autonomous collaborative formation navigation

  • [1] 严新平. 智能船舶的研究现状与发展趋势[J]. 交通与港航, 2016(1): 25-28. doi: 10.3969/j.issn.1001-599X.2016.01.006

    YAN Xin-ping. Research status and development trends of intelligent ships[J]. Communication and Shipping, 2016(1): 25-28. (in Chinese) doi: 10.3969/j.issn.1001-599X.2016.01.006
    [2] 杨邦杰, 严以新, 安雪晖. 长江流域"黄金水道"问题分析及对策建议[J]. 中国发展, 2015, 15(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFZ201501002.htm

    YANG Bang-jie, YAN Yi-xin, AN Xue-hui. Analyses and Policy Recommendations on the Yangtze Golden Waterway[J]. China Development, 2015, 15(1): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFZ201501002.htm
    [3] FAN Ai-long, WANG Jun-teng, HE Ya-peng, et al. Decarbonising inland ship power system: alternative solution and assessment method[J]. Energy, 2021, 226: 120266. doi: 10.1016/j.energy.2021.120266
    [4] JENS U S H, DONG W S, FONSECA T, et al. Transport 2040: automation, technology, employment—the future of work[R]. Malmo: World Maritime University, 2019.
    [5] 交通运输部, 中央网信办, 国家发展改革委, 等. 智能航运发展指导意见[R]. 北京: 交通运输部, 2019.

    Ministry of Transport of the People's Republic of China, Cyberspace Administration of China, National Development and Reform Commission, et al. Instruction on the development of smart shipping[R]. Beijing: Ministry of Transport of the People's Republic of China, 2019. (in Chinese)
    [6] 周翔宇, 吴兆麟, 王凤武, 等. 自主船舶的定义及其自主水平的界定[J]. 交通运输工程学报, 2019, 19(6): 149-162. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201906016.htm

    ZHOU Xiang-yu, WU Zhao-lin, WANG Feng-wu, et al. Definition of autonomous ship and its autonomy level[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 149-162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201906016.htm
    [7] 李文华, 张君彦, 林珊颖, 等. 水面自主船舶技术发展路径[J]. 船舶工程, 2019, 41(7): 64-73. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB201907016.htm

    LI Wen-hua, ZHANG Jun-yan, LIN Shan-ying, et al. The development path of maritime autonomous surface ships technology[J]. Ship Engineering, 2019, 41(7): 64-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CANB201907016.htm
    [8] 曾晓光. 智能船舶发展新态势[J]. 中国船检, 2018(1): 43-45. doi: 10.3969/j.issn.1009-2005.2018.01.010

    ZENG Xiao-guang. New trends in the development of smart ships[J]. China Ship Survey, 2018(1): 43-45. (in Chinese) doi: 10.3969/j.issn.1009-2005.2018.01.010
    [9] 严新平, 刘佳仑, 范爱龙, 等. 智能船舶技术发展与趋势简述[J]. 船舶工程, 2020, 42(3): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202003008.htm

    YAN Xin-ping, LIU Jia-lun, FAN Ai-long, et al. Brief introduction of the development and trend of smart ship technology[J]. Ship Engineering, 2020, 42(3): 15-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202003008.htm
    [10] 沈新琴. 分析数字航道技术在内河航道管理中的应用[J]. 中国水运, 2014, 14(7): 92-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201407039.htm

    SHEN Xin-qin. Application analysis of digital waterway technology in inland waterway management[J]. China Water Transport, 2014, 14(7): 92-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201407039.htm
    [11] 范爱龙, 贺亚鹏, 严新平, 等. 智能新能源船舶的概念及关键技术[J]. 船舶工程, 2020, 42(3): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202003013.htm

    FAN Ai-long, HE Ya-peng, YAN Xin-ping, et al. Concept and key technologies of intelligent new energy ship[J]. Ship Engineering, 2020, 42(3): 9-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202003013.htm
    [12] Department for Transport(UK). Maritime 2050: navigating the future[R]. London: Department for Transport(UK), 2019.
    [13] VOJKOVI AC'G G, MILENKOVI AC'G M. Autonomous ships and legal authorities of the ship master[J]. Case Studies on Transport Policy, 2020, 8(2): 333-340.
    [14] DNV·GL. Maritime forecast to 2050[R]. Norway: DNV·GL, 2019.
    [15] RAFIEI M, BOUDJADAR J, KHOOBAN M H. Energy management of a zero-emission ferry boat with a fuel cell-based hybrid energy system: feasibility assessment[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 1739-1748.
    [16] YUAN Yu-peng, WANG Ji-xiang, YAN Xin-ping, et al. A review of multi-energy hybrid power system for ships[J]. Renewable and Sustainable Energy Reviews, 2020, 132: 110081.
    [17] 蒋仲廉, 初秀民, 严新平. 智能水运的发展现状与展望——第十届中国智能交通年会《水路交通智能化论坛》综述[J]. 交通信息与安全, 2015, 33(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201506001.htm

    JIANG Zhong-lian, CHU Xiu-min, YAN Xin-ping. Developments and prospects of intelligent water transport: a review of the symposium on intelligent water transport, in conjunction with the 10th annual meeting of China ITS[J]. Journal of Transport Information and Safety, 2015, 33(6): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201506001.htm
    [18] CHEN Lin-ying, HUANG Ya-min, ZHENG Hua-rong, et al. Cooperative multi-vessel systems in urban waterway networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(8): 3294-3307.
    [19] CHEN L Y, HOPMAN H, NEGENBORN R R. Distributed model predictive control for vessel train formations of cooperative multi-vessel systems[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 101-118.
    [20] CURCIO J, LEONARD J, PATRIKALAKIS A. SCOUT— a low cost autonomous surface platform for research in cooperative autonomy[C]//IEEE. 2005 Proceedings of MTS/IEEE OCEANS. New York: IEEE, 2005: 725-729.
    [21] 马天宇, 杨松林, 王涛涛, 等. 多USV协同系统研究现状与发展概述[J]. 舰船科学技术, 2014, 36(6): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201406003.htm

    MA Tian-yu, YANG Song-lin, WANG Tao-tao, et al. An outline of current status and development of the multiple USV cooperation system[J]. Ship Science and Technology, 2014, 36(6): 7-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201406003.htm
    [22] 顾颖闽. 水面无人艇艇群技术发展概述[J]. 舰船科学技术, 2019, 41(23): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201923009.htm

    GU Ying-min. Overview of technology development of the USV group[J]. Ship Science and Technology, 2019, 41(23): 35-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201923009.htm
    [23] European Maritime Safety Agency. Annual overview of marine casualties and incidents 2018[R]. Lisbon: European Maritime Safety Agency, 2018.
    [24] 范诗琪, 严新平, 张金奋, 等. 水上交通事故中人为因素研究综述[J]. 交通信息与安全, 2017, 35(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201702001.htm

    FAN Shi-qi, YAN Xin-ping, ZHANG Jin-fen, et al. A review on human factors in maritime accidents[J]. Journal of Transport Information and Safety, 2017, 35(2): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201702001.htm
    [25] ROBINSON B H. The coevolution of undersea vehicles and deep-sea research[J]. Marine Technology Society Journal, 1999, 33(4): 65-73.
    [26] 沈克, 严允, 晏红文. 我国深海作业级ROV技术现状及发展展望[J]. 控制与信息技术, 2020(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-BLJS202003001.htm

    SHEN Ke, YAN Yun, YAN Hong-wen. Research status and development trend of deep-sea work class ROV in China[J]. Control and Information Technology, 2020(3): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BLJS202003001.htm
    [27] 余明刚, 张旭, 陈宗恒. 自治水下机器人技术综述[J]. 机电工程技术, 2017, 46(8): 155-157. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKF201708048.htm

    YU Ming-gang, ZHANG Xu, CHEN Zong-heng. Summary of autonomous underwater vehicle(AUV) technology[J]. Mechanical and Electrical Engineering Technology, 2017, 46(8): 155-157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKF201708048.htm
    [28] 曹俊, 胡震, 刘涛, 等. 深海潜水器装备体系现状及发展分析[J]. 中国造船, 2020, 61(1): 204-218. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC202001021.htm

    CAO Jun, HU Zhen, LIU Tao, et al. Current Situation and development of deep-sea submersible equipment[J]. Shipbuilding of China, 2020, 61(1): 204-218. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC202001021.htm
    [29] 庞硕, 纠海峰. 智能水下机器人研究进展[J]. 科技导报, 2015, 33(23): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201523033.htm

    PANG Shuo, JIU Hai-feng. Current status of autonomous underwater vehicles research and development[J]Science and Technology Review, 2015, 33(23): 66-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201523033.htm
    [30] TEAGUE J, ALLEN M J, SCOTT T B. The potential of low-cost ROV for use in deep-sea mineral, ore prospecting and monitoring[J]. Ocean Engineering, 2018, 147: 333-339.
  • 加载中
图(6)
计量
  • 文章访问数:  1784
  • HTML全文浏览量:  364
  • PDF下载量:  408
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回