Performance experiments of high-modulus asphalt treated base
-
摘要: 从高模量沥青稳定碎石的材料组成设计出发, 通过动态模量和抗压回弹模量两种力学设计参数的测定, 研究了高模量沥青稳定碎石的力学性能, 通过车辙试验、冻融劈裂试验、劈裂试验及疲劳试验, 分析了高模量沥青稳定碎石路用性能。试验结果表明: 不同类型沥青对沥青稳定碎石的动态模量影响较大, 高模量沥青稳定碎石的抗压回弹模量比普通沥青稳定碎石和改性沥青碎石分别提高了约24%和19%, 且高模量沥青稳定碎石具有良好的高温性能、水稳定性能和疲劳性能, 但低温性能较差。Abstract: According to the material composition design of high-modulus asphalt treated base(ATB), the mechanical properties were analyzed through measuring their dynamic moduli and compression rebound moduli of high-modulus ATB, modified ATB and conventional ATB, and road service performances were studied through wheel rutting test, freeze-thaw split test, split test and fatigue test.Test result shows that various types of asphalts have relatively great influences on the dynamic moduli of ATBs.The compression rebound modulus of high-modulus ATB(AH-30) is 1.24 times as much as that of ATB-25(AH-70), and 1.19 times as much as that of ATB-25(SBS).Compared with other ATBs, high-modulus ATB has better high-temperature performance, water stability performance and fatigue performance, except for slightly poor low-temperature performance.
-
表 1 3种沥青的技术指标
Table 1. Technical indices of three asphalts
表 2 ATB-25级配
Table 2. Gradation of ATB-25
表 3 加载频率和温度对动态模量的影响
Table 3. Influences of loading frequency and temperature on dynamic modulus
表 4 高模量沥青稳定碎石的︱E*︱200/︱E*︱0
Table 4. ︱E*︱200/︱E*︱0of high-modulus ATB
表 5 抗压回弹模量试验结果
Table 5. Test results of compression rebound modulus
表 6 动静态模量对比
Table 6. Comparison of dynamic modulus and static resillent modulus
表 7 车辙试验结果
Table 7. Results of wheel rutting test
表 8 冻融劈裂试验结果
Table 8. Results of freeze-thaw split test
表 9 低温劈裂试验结果
Table 9. Results of split test under low temperature
表 10 疲劳试验结果
Table 10. Results of fatigue test
-
[1] NUNN M, FERNE B W. Design and assessment of long-lifeflexible pavements[C]//TRB. Transportation ResearchCircular 503: Perpetual Bituminous Pavements. WashingtonDC: TRB, 2001: 32-49. [2] CORTE J F. Development and uses of hard grade asphalt andof high modulus asphalt mixes in France[C]//TRB. Trans-portation Research Circular 503: Perpetual Bituminous Pave-ments. Washington DC: TRB, 2001: 12-31. [3] SILVI NO D C, LUIS P S. Assessing permanent deformationresistance of high modulus asphalt mixtures[J]. Journal ofTransportation Engineering, 2006, 132(5): 394-401. [4] 刘朝晖, 欧阳昇, 沙庆林. 高粘度硬沥青混合料路用性能研究[J]. 西部交通科技, 2007(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJT200701006.htmLI U Chao-hui, OUYANGSheng, SHA Qing-lin. Astudy onthe road service performance of high-viscosity hard asphaltmixture[J]. Western China Communications Science andTechnology, 2007(1): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJT200701006.htm [5] 曹江. AH-50硬质沥青路面材料性能研究[D]. 西安: 长安大学, 2006.CAOJiang. Research on properties of AH-50 hard asphalt aspavement material[D]. Xi an: Chang an University, 2006. (in Chinese) [6] NCHRP. Guide for mechanistic-empirical design of new andrehabilitated pavement structures[R]. Washington DC: TRB, 2005. [7] 舒富民. 复合式基层长寿命沥青路面结构与材料研究[D]. 南京: 东南大学, 2008.SHU Fu-min. Research on the structure and material ofperetual asphalt pavement with composite base[D]. Nanjing: Southeast University, 2008. (in Chinese) [8] FHWA. Fatigue response of asphalt mixtures[R]. WashingtonDC: National Research Council, 1990. [9] SHEN S H, CARPENTER S H. Application of the dissipatedenergy concept in fatigue endurance li mit testing[J]. Trans-portation Research Record, 2005, 1929: 165-173. [10] 杜群乐, 孙立军, 黄卫东, 等. 不同设计方法下沥青混合料疲劳性能研究[J]. 同济大学学报: 自然科学版, 2007, 35(9): 1204-1208. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200709009.htmDU Qun-le, SUN Li-jun, HUANG Wei-dong, et al. Asphaltmixtures fatigue performance study based on differentmixture design procedure[J]. Journal of Tongji University: Natural Science, 2007, 35(9): 1204-1208. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200709009.htm -