留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

出行方式与出发时间联合选择的分层Logit模型

杨励雅 邵春福 HAGHANIA

杨励雅, 邵春福, HAGHANIA. 出行方式与出发时间联合选择的分层Logit模型[J]. 交通运输工程学报, 2012, 12(2): 76-83. doi: 10.19818/j.cnki.1671-1637.2012.02.011
引用本文: 杨励雅, 邵春福, HAGHANIA. 出行方式与出发时间联合选择的分层Logit模型[J]. 交通运输工程学报, 2012, 12(2): 76-83. doi: 10.19818/j.cnki.1671-1637.2012.02.011
YANG Li-ya, SHAO Chun-fu, HAGHANI A. Nested logit model of combined selection for travel mode and departure time[J]. Journal of Traffic and Transportation Engineering, 2012, 12(2): 76-83. doi: 10.19818/j.cnki.1671-1637.2012.02.011
Citation: YANG Li-ya, SHAO Chun-fu, HAGHANI A. Nested logit model of combined selection for travel mode and departure time[J]. Journal of Traffic and Transportation Engineering, 2012, 12(2): 76-83. doi: 10.19818/j.cnki.1671-1637.2012.02.011

出行方式与出发时间联合选择的分层Logit模型

doi: 10.19818/j.cnki.1671-1637.2012.02.011
基金项目: 

国家973计划项目 2012CB725403

国家自然科学基金项目 50808174

详细信息
    作者简介:

    杨励雅(1978-), 女, 安徽阜阳人, 中国人民大学讲师, 工学博士, 从事城市交通规划研究

  • 中图分类号: U491.1

Nested logit model of combined selection for travel mode and departure time

More Information
    Author Bio:

    YANG Li-ya(1978-), female, lecturer, PhD, +86-10-62514875, liya_yang@263.net

  • 摘要: 基于随机效用最大化理论, 选取出行者特征、行程特性与出行方式服务水平作为效用变量, 以出行方式与出发时间作为选择肢, 构建了出发时间位于下层与出行方式位于下层的2种居民出行NL模型。分析了北京市居民出行样本数据, 并模拟了在早高峰时段对小汽车出行收取费用时, 小汽车出行者出行行为的变化。计算结果表明: 与传统MNL模型相比, NL模型具有更好的统计学特征, 调整后的拟合优度由0.338增大至0.404;在2种NL模型中, 出发时间位于下层的结构对样本数据的适应性更强; 当早高峰时段小汽车出行收取费用为5元时, 72.6%的小汽车出行者坚持原有出行方式与出发时间, 22.4%的小汽车出行者坚持小汽车方式, 但会改变出发时间, 4.8%的小汽车出行者改用公共交通方式, 但出发时间不变, 仅0.2%的小汽车出行者同时改变出行方式与出发时间; 当收取费用为10元时, 51.7%的小汽车出行者坚持原有出行方式与出发时间, 40.4%的小汽车出行者坚持小汽车方式, 但会改变出发时间, 7.9%的小汽车出行者改用公共交通方式, 但出发时间不变; 当收取费用为20元时, 27.5%的小汽车出行者坚持原有出行方式与出发时间, 60.6%的小汽车出行者坚持小汽车方式, 但会改变出发时间, 11.9%的小汽车出行者改用公共交通方式, 但出发时间不变。

     

  • 图  1  出发时间位于下层的NL模型结构

    Figure  1.  NL model structure with departure time located in lower layer

    图  2  出行方式位于下层的NL模型结构

    Figure  2.  NL model structure with travel mode located in lower layer

    图  3  出行行为对比

    Figure  3.  Comparison of travel behaviors

    表  1  效用变量

    Table  1.   Utility variables

    下载: 导出CSV

    表  2  方法1计算结果

    Table  2.   Calculation results of method 1

    下载: 导出CSV

    表  3  方法2计算结果

    Table  3.   Calculation results of method 2

    下载: 导出CSV

    表  4  工况1出行方式和出发时间

    Table  4.   Travel modes and departure times of section 1

    下载: 导出CSV

    表  5  工况2出行方式和出发时间

    Table  5.   Travel modes and departure times of section 2

    下载: 导出CSV

    表  6  工况3出行方式和出发时间

    Table  6.   Travel modes and departure times of section 3

    下载: 导出CSV
  • [1] PALMA A D, ROCHAT D. Mode choice for trips to work in Geneva: an empirical analysis[J]. Journal of Transport Geography, 2000, 8(1): 43-51. doi: 10.1016/S0966-6923(99)00026-5
    [2] BHARAT P, BHATTE O I. Errors in variables in multino-mial choice modeling: a simulation study applied to a multino-mial logit model of travel mode choice[J]. Transport Policy, 2011, 18(2): 326-335. doi: 10.1016/j.tranpol.2010.10.002
    [3] LIMTANAKOOL N, DIJST M, SCHWANEN T. The influ-ence of socioeconomic characteristics, land use and travel time considerations on mode choice for medium and longer-distance trips[J]. Journal of Transport Geography, 2006, 14(5): 327-341. doi: 10.1016/j.jtrangeo.2005.06.004
    [4] 许铁, 高林杰, 景鹏, 等. 基于PSO-SVM的居民出行方式预测模型[J]. 交通运输系统工程与信息, 2011, 11(5): 155-161. doi: 10.3969/j.issn.1009-6744.2011.05.023

    XU Tie, GAO Lin-jie, JING Peng, et al. Prediction model of residents'trip mode based on PSO-SVM[J]. Journal of Transportation Systems Engineering and Information Tech-nology, 2011, 11(5): 155-161. (in Chinese). doi: 10.3969/j.issn.1009-6744.2011.05.023
    [5] 姚荣涵. 基于最大信息熵的居民出行分布模型研究[D]. 长春: 吉林大学, 2004.

    YAO Rong-han. Study on inhabitant trip distraibution model based on maximum information entropy[D]. Changchun: Jilin University, 2004. (in Chinese).
    [6] 刘炳恩, 隽志才, 李艳玲, 等. 居民出行方式选择非集计模型的建立[J]. 公路交通科技, 2008, 25(5): 116-120. doi: 10.3969/j.issn.1002-0268.2008.05.022

    LIU Bing-en, JUAN Zhi-cai, LI Yan-ling, et al. Develop-ment of a multinomial logit model for travel mode choice of residents[J]. Journal of Highway and Transportation Researchand Development, 2008, 25(5): 116-120. (in Chinese). doi: 10.3969/j.issn.1002-0268.2008.05.022
    [7] LEMP J D, KOCKELMEN K M, DAMIEN P. The continu-ous cross-nested logit model: formulation and application for departure time choice[J]. Transportation Research Part B: Methodological, 2010, 44(5): 646-661. doi: 10.1016/j.trb.2010.03.001
    [8] SALEH W, FARRELL S. Implications of congestion char-ging for departure time choice: work and non-work schedule flexibility[J]. Transportation Research Part A: Policy and Practice, 2005, 39(9): 773-791.
    [9] OZBAY K, YANMAZ-TUZEL O. Valuation of travel time and departure time choice in the presence of time-of-day pri-cing[J]. Transportation Research Part A: Policy and Prac-tice, 2008, 42(4): 577-590. doi: 10.1016/j.tra.2007.12.002
    [10] 宗芳, 隽志才, 张慧永. 基于活动的日活动计划模型[J]. 吉林大学学报: 工学版, 2007, 37(6): 1294-1299. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY200706014.htm

    ZONG Fang, JUAN Zhi-cai, ZHANG Hui-yong. Activity-based full day activity pattern model[J]. Journal of Jilin Uni-versity: Engineering and Technology Edition, 2007, 37(6): 1294-1299. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY200706014.htm
    [11] BHAT C R. Analysis of travel mode and departure time choice for urban shopping trips[J]. Transportation Research Part B: Methodological, 1998, 32(6): 361-371. doi: 10.1016/S0191-2615(98)00004-6
    [12] DE JONG G, DALY A, PIETERS M, et al. A model for time of day and mode choice using error components logit[J]. Transportation Research Part E: Logistics and Transporta-tion Review, 2003, 39(3): 245-268. doi: 10.1016/S1366-5545(02)00037-6
    [13] WEN C H, KOPPELMAN F S. The generalized nested logit model[J]. Transportation Research Part B: Methodological, 2001, 35(7): 627-671. doi: 10.1016/S0191-2615(00)00045-X
    [14] BEKHOR S, PRASHKER J N. GEV-based destination choice models that account for unobserved similarities among alternatives[J]. Transportation Research Part B: Methodo-logical, 2008, 42(3): 243-262. doi: 10.1016/j.trb.2007.08.003
    [15] PINJARI A R. Generalized extreme value-based errorstruc-tures for multiple discrete-continuous choice models[J]. Transportation Research Part B: Methodological, 2011, 45(5): 474-489.
    [16] BIERLAIRE M. A theoretical analysis of the cross-nested logit model[J]. Annals of Operation Research, 2006, 144(1): 287-300. doi: 10.1007/s10479-006-0015-x
    [17] PAPOLA A. Some developments on the cross-nested logit model[J]. Transportation Research Part B: Methodological, 2004, 38(9): 833-851. doi: 10.1016/j.trb.2003.11.001
    [18] 胡华, 腾靖, 高云峰, 等. 多模式公交信息服务条件下的出行方式选择行为研究[J]. 中国公路学报, 2009, 22(2): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200902015.htm

    HU Hua, TENG Jing, GAO Yun-feng, et al. Research on travel mode choice behavior under integrated multi-modal transit information service[J]. China Journal of Highway and Transport, 2009, 22(2): 87-92. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200902015.htm
    [19] 刘浩学, 冯忠祥, 赵炜华, 等. 中国农村人口活动出行距离分布模型[J]. 长安大学学报: 自然科学版, 2010, 30(6): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201006015.htm

    LIU Hao-xue, FENG Zhong-xiang, ZHAO Wei-hua, et al. Trip distance distribution mode of Chinese rural population[J]. Journal of Chang'an University: Natural Science Edition, 2010, 30(6): 68-71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201006015.htm
    [20] 曲大义, 于仲臣, 庄劲松, 等. 苏州市居民出行特征分析及交通发展对策研究[J]. 东南大学学报: 自然科学版, 2001, 31(3): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX200103027.htm

    QU Da-yi, YU Zhong-chen, ZHUANG Jin-song, et al. Analysis on the resident trip characteristics and study on the transport development policies in Suzhou[J]. Journal of Southeast University: Natural Science Edition, 2001, 31(3): 118-123. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX200103027.htm
    [21] 冯忠祥, 刘浩学, 张景峰. 农村人口出行方式选择模型[J]. 交通运输工程学报, 2010, 10(3): 77-83. http://transport.chd.edu.cn/article/id/201003014

    FENG Zhong-xiang, LIU Hao-xue, ZHANG Jing-feng. Selection model of trip modes for rural population[J]. Journal of Traffic and Transportation Engineering, 2010, 10(3): 77-83. (in Chinese). http://transport.chd.edu.cn/article/id/201003014
    [22] LAHIRI K, GAO Jian. Bayesian analysis of nested logit model by Markov chain Monte Carlo[J]. Journal of Econo-metrics, 2002, 111(1): 103-133.
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  902
  • HTML全文浏览量:  144
  • PDF下载量:  2142
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-26
  • 刊出日期:  2012-04-25

目录

    /

    返回文章
    返回