-
摘要: 为分析驾驶人个人特征与行车速度之间的关系, 采用个人属性调查和实车试验相结合的方法, 获得80份驾驶人行车速度记录数据。按照驾驶人行车超速时间与总行车时间的比例, 将驾驶人超速选择行为区间划分为4个小区间。运用非集计理论, 将驾驶人的性别、年龄、性格、教育程度、驾龄等个人特征作为影响因素, 并将4个小区间作为4个选择肢, 建立了驾驶人个人特征对行车速度的影响度量模型, 并结合弹性理论分析了各个影响因素的敏感度。分析结果表明: 驾驶人的性别、年龄、教育程度、矫正视力、职业驾驶人和发生交通事故6个影响因素对应的弹性值均小于1.000, 说明上述因素对速度选择行为缺乏弹性; 在4个小区间上, 驾驶人的驾龄对应的弹性值分别为6.287、3.211、3.438和2.450, 性格对应的弹性值分别为1.249、1.045、2.033和3.672, 说明性格和驾龄2个影响因素对行车速度选择行为富有弹性, 影响显著。Abstract: In order to analyze the relationship between driver personal characteristics and vehicle velocity, the method of combining personal attribute survey and real vehicle test was carried out, and the vehicle velocity record data of 80 drivers were obtained. According to the ratio of over speed time and total travel time for driver, the section of over speed selection behavior for driver was divided into 4 small sections. By using disaggregate theory, the personal characteristics of driver such as sex, age, personality, education level and driving age were taken as influence factors, the 4 small sections were taken as alternative parts, the influence measurement model of the personal characteristics of driver on vehicle velocity was set up, and the sensitivity of each influence factor was analyzed based on elasticity theory. Analysis result shows that all the 6 elasticity values of sex, age, education level, corrected vision, professional driver, traffic accident occurrence are less than 1.000, so the above 6 influence factors are short of elasticity to speed selection behavior. In the 4 small sections, the elasticity values of driving age are 6.287, 3.211, 3.438 and 2.450 respectively, the elasticity values of personality are 1.249, 1.045, 2.033 and 3.672 respectively, the 2 influence factors are rich in elasticity to speed selection behavior, and their effects are significant.
-
Key words:
- traffic safety /
- driving behavior /
- vehicle velocity /
- personal attribute /
- MNL model /
- sensitivity analysis
-
表 1 行车速度
Table 1. Vehicle velocity
速度行为选择区间 A B C D 驾驶人数量 14 37 16 13 平均车速/(km·h-1) 60.2 69.6 72.8 80.1 最高速度平均值/(km·h-1) 78.4 110.2 109.7 113.2 表 2 影响因素
Table 2. Influence factors
影响因素 变量 说明 性别 X1 男性为1, 女性为0 年龄 X2 为实际年龄 教育程度 X3 划分为4级: 小学及以下、初中、高中、大学及以上, 分别取值为0、1、2、3 驾龄 X4 为实际驾龄 性格 X5 划分为4级: 抑郁质、粘液质、多血质、胆汁质, 分别取值为0、1、2、3 是否矫正视力 X6 哑变量, 是为1, 否则为0 是否职业驾驶人 X7 哑变量, 是为1, 否则为0 是否发生过交通事故 X8 哑变量, 是为1, 否则为0 表 3 模型影响因素标定结果
Table 3. Calibration results of model influence factors
影响因素 变量 参数值 标准差 t检验值 性别 X1 1.326 0.136 2.759 年龄 X2 0.462 0.026 3.223 教育程度 X3 0.025 0.149 1.981 驾龄 X4 0.924 0.032 -3.623 性格 X5 2.231 0.061 5.991 是否矫正视力 X6 0.043 0.348 2.025 是否职业驾驶人 X7 0.824 0.193 3.417 是否发生过交通事故 X8 1.176 0.239 4.278 表 4 影响因素与参数值
Table 4. Influence factors and parameter values
影响因素 变量 区间 A B C D 性别 X1 1.326 1.326 年龄 X2 0.046 0.046 教育程度 X3 0.025 0.025 0.025 驾龄 X4 0.924 0.924 性格 X5 2.231 2.231 2.231 2.231 是否矫正视力 X6 0.043 0.043 是否职业驾驶人 X7 0.824 0.824 是否发生过交通事故 X8 1.176 1.176 1.176 表 5 性别与年龄计算结果
Table 5. Calculation results of sex and age
速度选择行为区间 选择概率 性别 年龄 参数值 平均值 弹性值 参数值 平均值 弹性值 A 0.183 1.326 0.478 0.518 0.023 32.359 0.611 B 0.432 1.326 0.563 0.424 0.023 31.003 0.407 C 0.217 1.326 0.532 0.552 0.023 29.798 0.539 D 0.168 1.326 0.627 0.692 0.023 28.876 0.555 表 6 教育程度与驾龄计算结果
Table 6. Calculation results of education level and driving age
速度选择行为区间 选择概率 教育程度 驾龄 参数值 平均值 弹性值 参数值 平均值 弹性值 A 0.183 0.025 1.274 0.026 0.924 8.328 6.287 B 0.432 0.025 1.365 0.019 0.924 6.119 3.211 C 0.217 0.025 1.117 0.022 0.924 4.752 3.438 D 0.168 0.025 1.486 0.031 0.924 3.187 2.450 表 7 性格与矫正视力计算结果
Table 7. Calculation results of personality and corrected vision
速度选择行为区间 选择概率 性格 是否矫正视力 参数值 平均值 弹性值 参数值 平均值 弹性值 A 0.183 2.231 0.685 1.249 0.043 0.584 0.021 B 0.432 2.231 0.825 1.045 0.043 0.478 0.012 C 0.217 2.231 1.164 2.033 0.043 0.493 0.017 D 0.168 2.231 1.978 3.672 0.043 0.468 0.017 表 8 职业驾驶人与发生交通事故计算结果
Table 8. Calculation results of professional driver and traffic accident occurrence
速度选择行为区间 选择概率 是否职业驾驶人 是否发生过交通事故 参数值 平均值 弹性值 参数值 平均值 弹性值 A 0.183 0.824 0.445 0.300 1.176 0.386 0.371 B 0.432 0.824 0.493 0.231 1.176 0.274 0.183 C 0.217 0.824 0.575 0.371 1.176 0.335 0.308 D 0.168 0.824 0.484 0.332 1.176 0.221 0.216 -
[1] SOLOMON D. Accidents on main rural highways related to speed, driver and vehicle[R]. Washington DC: US Depart-ment of Commerce, 1964. [2] FILDES B N, RUMBOLD G, LEENING A. Speed behavior and drivers attitude to speeding[R]. Melbourne: Monash University, 1991. [3] BARUYA A. Speed-accident relationships on different kinds of European roads[R]. London: Transportation Research Laboratory, 1998. [4] LASSARRE S. The introduction of the variables traffic vol-ume, speed, and belt-wearing into a predictive model of the severity of accidents[J]. Accident Analysis and Prevention, 1986, 18(2): 129-134. doi: 10.1016/0001-4575(86)90057-6 [5] KLOEDEN C N, MCLEAN A J, MOORE V M, et al. Travel-ling speed and the risk of crash involvement on rural road[R]. Adelaide: The University of Adelaide, 2001. [6] 裴玉龙, 程国柱. 高速公路车速离散性与交通事故的关系及车速管理研究[J]. 中国公路学报, 2004, 17(1): 74-78. doi: 10.3321/j.issn:1001-7372.2004.01.017PEI Yu-long, CHENG Guo-zhu. Research on the relation-ship between discrete character of speed and traffic accident and speed management of freeway[J]. China Journal of Highway and Transport, 2004, 17(1): 74-78. (in Chinese). doi: 10.3321/j.issn:1001-7372.2004.01.017 [7] 冯忠祥, 刘静, 李阳阳, 等. 攻击性驾驶行为选择模型及影响因素敏感度分析[J]. 中国公路学报, 2012, 25(2): 106-112. doi: 10.3969/j.issn.1001-7372.2012.02.017FENG Zhong-xiang, LIU Jing, LI Yang-yang, et al. Selected model and sensitivity analysis of aggressive driving behavior[J]. China Journal of Highway and Transport, 2012, 25(2): 106-112. (in Chinese). doi: 10.3969/j.issn.1001-7372.2012.02.017 [8] 杜博英. 道路交通事故与车速建模[J]. 公路交通科技, 2002, 19(6): 116-118. doi: 10.3969/j.issn.1002-0268.2002.06.032DU Bo-ying. Expressway traffic accident and matrix of vehicle speed[J]. Journal of Highway and Transportation Research and Development, 2002, 19(6): 116-118. (in Chinese). doi: 10.3969/j.issn.1002-0268.2002.06.032 [9] 钟连德, 孙小端, 陈永胜, 等. 高速公路大、小车速度与事故率之间的关系[J]. 北京工业大学学报, 2007, 33(2): 185-188. doi: 10.3969/j.issn.0254-0037.2007.02.015ZHONG Lian-de, SUN Xiao-duan, CHEN Yong-sheng, et al. The relationships between crash rates and average speeddifference between cars and large vehicles on freeway[J]. Journal of Beijing University of Technology, 2007, 33(2): 185-188. (in Chinese). doi: 10.3969/j.issn.0254-0037.2007.02.015 [10] 张生瑞, 赵友功, 王超深. 基于速度控制的高速公路隧道交通安全策略[J]. 长安大学学报: 自然科学版, 2009, 29(6): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200906017.htmZHANG Sheng-rui, ZHAO You-gong, WANG Chao-shen. Free-way tunnel traffic safety strategy based on vehicle speed[J]. Journal of Chang'an University: Natural Science Edition, 2009, 29(6): 74-77. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200906017.htm [11] MALYSHKINA N V, MANNERING F L. Markov switch-ing multinomial logit model: an application to accident-injury severities[J]. Accident Analysis and Prevention, 2009, 41(4): 829-838. [12] GUAN Hong-zhi, YIN Yuan-fei, YAN Hai, et al. Urban railway accessibility[J]. Tsinghua Science and Technology, 2007, 12(2): 192-197. [13] 吴群琪, 袁长伟. 公路网规划研究进展与发展趋势[J]. 中国公路学报, 2007, 20(3): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200703016.htmWU Qun-qi, YUAN Chang-wei. Research progress and develop-ment tendency of highway network planning[J]. China Journal of Highway and Transport, 2007, 20(3): 91-96. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200703016.htm [14] 关宏志, 王鑫, 王雪. 停车需求预测方法研究[J]. 北京工业大学学报, 2006, 32(7): 600-604. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD200607006.htmGUAN Hong-zhi, WANG Xin, WANG Xue. The research on forecasting method for parking demanding[J]. Journal of Beijing University of Technology, 2006, 32(7): 600-604. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD200607006.htm [15] 杨励雅, 邵春福, HAGHANI A. 出行方式与出发时间联合选择的分层Logit模型[J]. 交通运输工程学报, 2012, 12(2): 76-83. http://transport.chd.edu.cn/article/id/201202011YANG Li-ya, SHAO Chun-fu, HAGHANI A. Nested logit model of combined selection for travel mode and departure time[J]. Journal of Traffic and Transportation Engineering, 2012, 12(2): 76-83. (in Chinese). http://transport.chd.edu.cn/article/id/201202011 [16] 袁华智, 冯忠祥, 蹇小平, 等. 城市中心区域小汽车停车设施选择模型[J]. 公路交通科技, 2012, 29(10): 137-141. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201210027.htmYUAN Hua-zhi, FENG Zhong-xiang, JIAN Xiao-ping, et al. Selection model of car parking facility in urban central region[J]. Journal of Highway and Transportation Research and Development, 2012, 29(10): 137-141. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201210027.htm [17] 赵建有, 袁华智, 蹇小平, 等. 城市低收入人群出行方式选择模型[J]. 长安大学学报: 自然科学版, 2012, 32(4): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201204015.htmZHAO Jian-you, YUAN Hua-zhi, JIAN Xiao-ping, et al. Selection model of trip mode for urban low-income population[J]. Journal of Chang'an University: Natural Science Edition, 2012, 32(4): 65-69. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201204015.htm [18] 冯忠祥, 刘浩学, 张景峰. 农村人口出行方式选择模型[J]. 交通运输工程学报, 2010, 10(3): 77-83. http://transport.chd.edu.cn/article/id/201003014FENG Zhong-xiang, LIU Hao-xue, ZHANG Jing-feng. Selection model of trip modes for rural population[J]. Journal of Traffic and Transportation Engineering, 2010, 10(3): 77-83. (in Chinese). http://transport.chd.edu.cn/article/id/201003014