留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
马建,赵祥模,贺拴海,等.路面检测技术综述[J].交通运输工程学报,2017,17(05):121-137.
引用本文: 马建,赵祥模,贺拴海,等.路面检测技术综述[J].交通运输工程学报,2017,17(05):121-137.
MA Jian,ZHAO Xiang-mo,HE Shuan-hai,et al.Review of pavement detection technology[J].Journal of Traffic and Transportation Engineering,2017,17(05):121-137.
Citation: MA Jian,ZHAO Xiang-mo,HE Shuan-hai,et al.Review of pavement detection technology[J].Journal of Traffic and Transportation Engineering,2017,17(05):121-137.

路面检测技术综述

详细信息
  • 中图分类号: U416.2

Review of pavement detection technology

  • 摘要: 总结了路面检测重要研究成果,分析了路面损坏、平整度、车辙、抗滑性能(构造深度)和结构强度(弯沉)检测技术的发展现状,研究了路面检测技术的不足与发展方向。研究结果表明:国内外路面检测技术的发展经历了3个阶段,从早期传统的人工检测到20世纪末的半自动化检测,发展到目前的无损自动检测; 无损自动检测的主要特点是快速与智能化,采用多源传感器协同工作,并且集成在多功能道路检测车上,能够同时检测路面损坏、平整度、车辙、抗滑性能和结构强度以及道路线形与沿线设施等; 在路面损坏检测方面,采用数字图像检测技术,实现了路面裂缝的快速检测; 在路面平整度检测方面,采用激光位移传感技术,实现了快速自动化检测; 在路面车辙检测方面,采用激光和数字图像技术,实现了非接触智能化检测; 在路面抗滑性能和结构强度检测方面,建立了铺砂法与贝克曼梁法检测结果的相关关系,实现了基于激光技术的路面构造深度与弯沉快速检测; 为了减少外界因素对现有检测技术和检测设备的干扰,提高检测信号的信噪比,应该开发适合各种工况下的路面检测和数据处理方法,实现路面检测高效化与智能化。

     

  • [1] MOHAN A, POOBAL S. Crack detection using image processing: a critical review and analysis[J]. Alexandria Engineering Journal, 2017, DOI: 10.1016/j.aej.2017.01.020.
    [2] JIANG Ming-hu, GIELEN G, DENG Bei-xing, et al. A fast learning algorithm for time-delay neural networks[J]. Information Sciences, 2002, 148(1-4): 27-39.
    [3] 啜二勇.国外路面自动检测系统发展综述[J].交通标准化,2009(204):96-99.

    CHUO Er-yong. Development summary of international pavement surface distress automatic survey system[J]. Transport Standardization, 2009(204): 96-99.(in Chinese)
    [4] KIM J Y. Development of new automated crack measurement algorithm using laser images of pavement surface[D]. Iowa: The University of Iowa, 2008.
    [5] MONEM T A, OLOUFA A A, MAHGOUB H. Asphalt crack detection using thermography[R]. Orlando: University of Central Florida, 2005: 1-12.
    [6] WANG K C P. Elements of automated survey of pavements and a 3D methodology[J]. Journal of Modern Transportation, 2011, 19(1): 51-57.
    [7] WANG K C P, GONG Wei-guo. Real-time automated survey system of pavement cracking in parallel environment[J]. Journal of Infrastructure Systems, 2005, 11(3): 154-164.
    [8] HUANG Ya-xiong, XU Bu-gao. Automatic inspection of pavement cracking distress[J]. Journal of Electronic Imaging, 2006, 15(1), DOI: 10.1117/1.2177650.
    [9] CHENG H D, MIYOJIM M. Automatic pavement distress detection system[J]. Information Sciences, 1998, 108(1-4): 219-240.
    [10] 王建锋.激光路面三维检测专用车技术与理论研究[D].西安:长安大学,2010.

    WANG Jian-feng. Research on vehicle technology on road three-dimension measurement[D]. Xi’an: Chang’an University, 2010.(in Chinese)
    [11] 罗 瑞.基于图像处理的路面裂缝检测算法研究[D].芜湖:安徽工程大学,2017.

    LUO Rui. Research of pavement crack detection algorithm based on image process[D]. Wuhu: Anhui Polytechnic University, 2017.(in Chinese)
    [12] CHENG Heng-da, CHEN Jim-rong, GLAZIER C, et al. A novel fuzzy logic approach to pavement distress detection[C]∥SPIE. Nondestructive Evaluation of Bridges and Highways. Breda: SPIE, 1996: 97-108.
    [13] BHUTANI K R, BATTOU A. Application of fuzzy relations to image enhancement[J]. Pattern Recognition Letters, 1995, 16(9): 901-909.
    [14] 刘玉臣,王国强,林建荣.基于模糊理论的路面裂缝图像增强方法[J].筑路机械与施工机械化,2006(2):35-37.

    LIU Yu-chen, WANG Guo-qiang, LIN Jian-rong. Image enhancement for pavement crack image based on fuzzy theory[J]. Road Machinery and Construction Mechanization, 2006(2): 35-37.(in Chinese)
    [15] 唐 磊,赵春霞,王鸿南,等.路面图像增强的多偏微分方程融合法[J].中国图象图形学报,2008,13(9):1661-1666.

    TANG Lei, ZHAO Chun-xia, WANG Hong-nan, et al. Fusion of multiple basic PDE models for enhancing road surface images[J]. Journal of Image and Graphics, 2008, 13(9): 1661-1666.(in Chinese)
    [16] ZUO Yong-xia, WANG Guo-qiang, ZUO Chun-cheng. Wavelet packet denoising for pavement surface cracks detection[C]∥IEEE. International Conference on Computational Intelligence and Security. New York: IEEE, 2008: 481-484.
    [17] ZHANG Da-qi, QU Shi-ru, HE Li, et al. Automatic ridgelet image enhancement algorithm for road crack image based on fuzzy entropy and fuzzy divergence[J]. Optics and Lasers in Engineering, 2009, 47(11): 1216-1225.
    [18] 王兴建,秦国锋,赵慧丽.基于多级去噪模型的路面裂缝检测方法[J].计算机应用,2010,30(6):1606-1609,1612.

    WANG Xing-jian, QIN Guo-feng, ZHAO Hui-li. Pavement crack detection method based on multilevel denoising model[J]. Journal of Computer Applications, 2010, 30(6): 1606-1609, 1612.(in Chinese)
    [19] 李清泉,胡庆武.基于图像自动匀光的路面裂缝图像分析方法[J].公路交通科技,2010,27(4):1-5,27.

    LI Qing-quan, HU Qing-wu. A pavement crack image analysis approach based on automatic image dodging[J]. Journal of Highway and Transportation Research and Development, 2010, 27(4): 1-5, 27.(in Chinese)
    [20] KIRSCHKE K R, VELINSKY S A. Histogram-based approach for automated pavement-crack sensing[J]. Journal of Transportation Engineering, 1992, 118(5): 700-710.
    [21] TANAKA N, UEMATSU K. A crack detection method in road surface images using morphology[C]∥DBLP. Proceedings of IAPR Workshop on Machine Vision Applications. Trier: DBLP, 1998: 154-157.
    [22] 闫茂德,伯绍波,贺昱曜.一种基于形态学的路面裂缝图像检测与分析方法[J].工程图学学报,2008(2):142-147.

    YAN Mao-de, BO Shao-bo, HE Yu-yao. A method of image detection and analysis for pavement crack based on morphology[J]. Journal of Engineering Graphics, 2008(2): 142-147.(in Chinese)
    [23] OLIVEIRA H, CORREIA P L. Automatic road crack segmentation using entropy and image dynamic thresholding[C]∥IEEE. 17th European Signal Processing Conference. New York: IEEE, 2009: 622-626.
    [24] CHENG H D, CHEN Jim-rong, GLAZIER C, et al. Novel approach to pavement cracking detection based on fuzzy set theory[J]. Journal of Computing in Civil Engineering, 1999, 13(4): 270-280.
    [25] CHENG H D, SHI X J, GLAZIER C. Real-time image thresholding based on sample space reduction and interpolation approach[J]. Journal of Computing in Civil Engineering, 2003, 17(4): 264-272.
    [26] 李清泉,刘向龙.路面裂缝影像几何特征提取算法[J].中国科技论文在线,2007,2(7):517-522.

    LI Qing-quan, LIU Xiang-long. An algorithm to image-based pavement cracks geometry features extraction[J]. Sciencepaper Online, 2007, 2(7): 517-522.(in Chinese)
    [27] 孙波成,邱延峻.路面裂缝图像处理算法研究[J].公路交通科技,2008,25(2):64-68.

    SUN Bo-cheng, QIU Yan-jun. Pavement crack diseases recognition based on image processing algorithm[J]. Journal of Highway and Transportation Research and Development, 2008, 25(2): 64-68.(in Chinese)
    [28] HUANG Ya-xiong, XU Bu-gao. Automatic inspection of pavement cracking distress[J]. Journal of Electronic Imaging, 2006, 15(1), DOI: 10.1117/1.2177650.
    [29] SOMNCHAREAN S, PHIPHOBMONGKOL S. Crack detection on asphalt surface image using enhanced grid cell analysis[C]∥ IEEE. 4th IEEE International Symposium on Electronic Design, Test and Applications. New York: IEEE, 2008: 49-54.
    [30] 唐 磊,赵春霞,王鸿南,等.基于图像三维地形模型的路面裂缝自动检测[J].计算机工程,2008,34(5):20-21,38.

    TANG Lei, ZHAO Chun-xia, WANG Hong-nan, et al. Automated pavement crack detection based on image 3D terrain model[J]. Computer Engineering, 2008, 34(5): 20-21, 38.(in Chinese)
    [31] 黄建平.基于二维图像和深度信息的路面裂缝检测关键技术研究[D].哈尔滨:哈尔滨工业大学,2013.

    HUANG Jian-ping. Research on the key technologies of pavement crack inspection based on 2D image and depth information[D]. Harbin: Harbin Institute of Technology, 2013.(in Chinese)
    [32] 王 刚,贺安之,肖 亮.基于高速公路裂纹局部线性特征内容的脊波变换域算法研究[J].光学学报,2006,26(3):341-346.

    WANG Gang, HE An-zhi, XIAO Liang. Algorithm research in ridgelet transform domain based on the image content of freeway local linear crack[J]. Acta Optica Sinica, 2006, 26(3): 341-346.(in Chinese)
    [33] CHUA Koon-meng, XU Ling. Simple procedure for identifying pavement distresses from video images[J]. Journal of Transportation Engineering, 1994, 120(3): 412-431.
    [34] LEE B J, LEE H D. Position-invariant neural network for digital pavement crack analysis[J]. Computer-Aided Civil and Infrastructure Engineering, 2004, 19(2): 105-118.
    [35] 肖旺新,严新平,张 雪.基于混合密度因子的路面损坏自动识别研究[J].交通运输工程与信息学报,2005,3(2):19-26.

    XIAO Wang-xin, YAN Xin-ping, ZHANG Xue. Research on the automatic pavement distress recognition based on synthetical distress density factor [J]. Journal of Transportation Engineering and Information, 2005, 3(2): 19-26.(in Chinese)
    [36] 丁爱玲,焦李成.基于支撑矢量机的路面损坏识别[J].长安大学学报:自然科学版2007,27(2):34-37.

    DING Ai-ling, JIAO Li-cheng. Automation of recogniting pavement surface distress based on support vector machine[J]. Journal of Chang’an University: Natural Science Edition, 2007, 27(2): 34-37.(in Chinese)
    [37] OLIVEIRA H, CORREIA P L. Supervised strategies for cracks detection in images of road pavement flexible surfaces[C]∥IEEE. 16th European Signal Processing Conference. New York: IEEE, 2008, 1-5.
    [38] 李清泉,刘向龙.路面影像破损加权评定方法[J].中国公路学报,2009,22(4):45-49.

    LI Qing-quan, LIU Xiang-long. Pavement image distress evaluation method based on weighted scheme[J]. China Journal of Highway and Transport, 2009, 22(4): 45-49.(in Chinese)
    [39] TALAB A M A, HUANG Zhang-can, XI Fan, et al. Detection crack in image using Otsu method and multiple filtering in image processing techniques[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(3): 1030-1033.
    [40] ZOU Qin, CAO Yu, LI Qing-quan, et al. CrackTree: automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012, 33(3): 227-238.
    [41] SALMAN M, MATHAVAN S, KAMAL K, et al. Pavement crack detection using the Gabor filter[C]∥IEEE. 16th International IEEE Annual Conference on Intelligent Transportation Systems. New York: IEEE, 2013: 2039-2044.
    [42] SONG Hong-xun, WANG Wei-xing, WANG Feng-ping, et al. Pavement crack detection by ridge detection on fractional calculus and dual-thresholds[J]. International Journal of Multimedia and Ubiquitous Engineering, 2015, 10(4): 19-30.
    [43] 张德津,李清泉,陈 颖,等.基于空间聚集特征的沥青路面裂缝检测方法[J].自动化学报,2016,42(3):443-454.

    ZHANG De-jin, LI Qing-quan, CHEN Ying, et al. Asphalt pavement crack detection based on spatial clustering feature[J]. Acta Automatica Sinica, 2016, 42(3): 443-454.(in Chinese)
    [44] RABAH M, EIHATTAB A, FAYAD A. Automatic concrete cracks detection and mapping of terrestrial laser scan data[J]. NRIAG Journal of Astronomy and Geophysics, 2013, 2(2): 250-255.
    [45] CHOI J, ZHU L, KUROSU H. Detection of cracks in paved road surface using laser scan image data[C]∥ISPRS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vienna: ISPRS, 2016: 559-562.
    [46] LI Wei, HUYAN Ju, TIGHE S L, et al. Three-Dimensional pavement crack detection algorithm based on two-dimensional empirical mode decomposition[J]. Journal of Transportation Engineering Part B: Pavements, 2017, 143(2), DOI: 10.1061/JPEODX.0000006.
    [47] ZHANG A, WANG K C P, LI Bao-xian, et al. Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network[J]. Computer-aided Civil and Infrastructure Engineering, 2017, 32(10): 805-819.
    [48] 宋宏勋,马 建,王建锋,等.基于双相机立体摄影测量的路面裂缝识别方法[J].中国公路学报,2015,28(10):18-25,40.

    SONG Hong-xun, MA Jian, WANG Jian-feng, et al. Identification of pavement crack based on dual camera stereo photogrammetry[J]. China Journal of Highway and Transport, 2015, 28(10): 18-25, 40.(in Chinese)
    [49] 王建锋,马 建,马荣贵,等.动位移的加速度精确测量技术研究[J].计算机科学,2010,37(12):201-202,237.

    WANG Jian-feng, MA Jian, MA Rong-gui, et al. Study on calculation of dynamic displacement from time-frequency integration of acceleration[J]. Computer Science, 2010, 37(12): 201-202, 237.(in Chinese)
    [50] 王建锋,李 平,韩 毅.基于多传感器综合的路面不平度测量[J].武汉大学学报:工学版,2012,45(3):361-365.

    WANG Jian-feng, LI Ping, HAN Yi. Road roughness measurement based on multi-sensor data comprehension[J]. Engineering Journal of Wuhan University, 2012, 45(3): 361-365.(in Chinese)
    [51] 吴秉军,刘东海,孙源泽,等.基于路面高程自动测量的全断面平整度计算方法[J].中国公路学报,2016,29(11):10-17.

    WU Bing-jun, LIU Dong-hai, SUN Yuan-ze, et al. Pavement roughness calculation of entire road surface based on automatic road elevation measuring[J]. China Journal of Highway and Transport, 2016, 29(11): 10-17.(in Chinese)
    [52] 王建锋,宋宏勋,马荣贵.基于阵列信号融合的路面平整度检测原理研究[J].微电子学与计算机,2012,29(10):69-73.

    WANG Jian-feng, SONG Hong-xun, MA Rong-gui. Road roughness detection method based on array signals processing[J]. Microelectronics and Computer, 2012, 29(10): 69-73.(in Chinese)
    [53] DU Yu-chuan, LIU Cheng-long, WU Di-fei, et al. Application of vehicle mounted accelerometers to measure pavement roughness[J]. International Journal of Distributed Sensor Networks, 2016, DOI: 10.1155/2016/8413146.
    [54] 毛庆洲,叶 浩,丁诗雄,等.基于小波变换的路面平整度自适应提取算法[J].中国公路学报,2015,28(10):11-17.

    MAO Qing-zhou, YE Hao, DING Shi-xiong, et al. Adaptive extraction algorithm of pavement roughness based on wavelet transformation[J]. China Journal of Highway and Transport, 2015, 28(10): 11-17.(in Chinese)
    [55] 王建锋,宋宏勋,马荣贵.路面平整度评价指标IRI的影响因素[J].重庆交通大学学报:自然科学版,2012,31(6):1145-1148.

    WANG Jian-feng, SONG Hong-xun, MA Rong-gui. Influencing factors of international roughness index[J]. Journal of Chongqing Jiaotong University: Natural Science, 2012, 31(6): 1145-1148.(in Chinese)
    [56] DU Yu-chuan, LIU Cheng-long, WU Di-fei, et al. Measurement of international roughness index by using Z-axis accelerometers and GPS[J]. Mathematical Problems in Engineering, 2014, DOI: 10.1155/2014/928980.
    [57] 江 东,刘绪坤.基于磁悬浮振动测试技术的公路平整度测试研究[J].仪表技术与传感器,2017(2):102-106.

    JIANG Dong, LIU Xu-kun. Road flatness detection based on magnetic levitation vibration measurement technique[J]. Instrument Technique and Sensor, 2017(2): 102-106.(in Chinese)
    [58] 刘庆华,周 帏,何 仁,等.基于优化模糊C均值聚类算法的路面不平度识别[J].农业工程学报,2014,30(22):195-200.

    LIU Qing-hua, ZHOU Wei, HE Ren, et al. Road roughness recognition based on improved fuzzy C-mean algorithm combined with genetic algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(22): 195-200.(in Chinese)
    [59] 崔丹丹,张才千,韩 东.基于BP神经网络的路面不平度检测与仿真[J].计算机仿真,2014,31(5):162-166.

    CUI Dan-dan, ZHANG Cai-qian, HAN Dong. Road roughness detection and simulation based on BP neural network[J]. Computer Simulation, 2014, 31(5): 162-166.(in Chinese)
    [60] WANG Wei, BEI Shao-yi, ZHANG Lan-chun, et al. Pavement roughness identification research in time domain based on neural network[J]. Journal of Vibroengineering, 2015, 17(7): 3865-3875.
    [61] 王建锋,马 建,马荣贵,等.精确车辙检测系统的研究与开发[J].微电子学与计算机,2011,28(2):175-177,180.

    WANG Jian-feng, MA Jian, MA Rong-gui, et al. Research and development of detection system for road rut[J]. Microelectronics and Computer, 2011, 28(2): 175-177, 180.(in Chinese)
    [62] 李 莉,孙立军,谭生光,等.用于路面车辙检测的线结构光图像处理流程[J].同济大学学报:自然科学版,2013,41(5):710-715.

    LI Li, SUN Li-jun, TAN Sheng-guang, et al. Line-structured light image processing procedure for pavement rut detection[J]. Journal of Tongji University: Natural Science, 2013, 41(5): 710-715.(in Chinese)
    [63] WANG C Y, TAN Q C, GUO R H. Design and optimization of a linear laser beam[J]. Lasers in Engineering, 2014, 27(5/6): 373-381.
    [64] WEI Yun-tao, HONG Han-yu, ZHANG Xiu-hua, et al. A new method for automatic detection of rut feature based on road laser images[C]∥SPIE. 6th International Symposium on Multispectral Image Processing and Pattern Recognition. Breda: SPIE, 2009, DOI: 10.1117/12.833155.
    [65] 陈小宇,雷 波.一种快速鲁棒的车辙检测方法[J].应用科学学报,2013,31(5):512-518.

    CHEN Xiao-yu, LEI Bo. Fast and robust measurement of pavement ruts[J]. Journal of Applied Sciences, 2013, 31(5): 512-518.(in Chinese)
    [66] 李清泉,雷 波,毛庆洲,等.利用激光三角法进行快速车辙检测[J].武汉大学学报:信息科学版,2010,35(3):302-307.

    LI Qing-quan, LEI Bo, MAO Qing-zhou, et al. A fast method for pavement ruts measuring with laser triangulation[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 302-307.(in Chinese)
    [67] KAGE T, MATSUSHIMA K. Method of rut detection using lasers and in-vehicle stereo camera[C]∥IEEE. 2015 International Conference on Intelligent Informatics and Biomedical Sciences. New York: IEEE, 2015: 48-53.
    [68] ZHANG Yue, GAO Ting-ting. VC-based rutting digital imaging automatic detection technology research and design for road construction[J]. Advanced Materials Research, 2012(461): 370-372.
    [69] CUI Xin-zhuang, ZHOU Xing-lin, LOU Jun-jie, et al. Measurement method of asphalt pavement mean texture depth based on multi-line laser and binocular vision[J]. International Journal of Pavement Engineering, 2017, 18(5): 459-471.
    [70] 刘仪培,皇甫皇甫皝.路表构造特征的沥青路面抗滑性能评价方法研究[J].黑龙江交通科技,2016(3):1-3.

    LIU Yi-pei, HUANG Pu-guang. Study on asphalt pavement skid resistance evaluation method based on the road surface structural features[J]. Communications Science and Technology Heilongjiang, 2016(3): 1-3.(in Chinese)
    [71] 马荣贵,王建锋,李 平.沥青路面构造深度精确检测方法研究[J].科学技术与工程,2014,14(8):265-268.

    MA Rong-gui, WANG Jian-feng, LI Ping. Research on high precision measurement of pavement texture depth[J]. Science Technology and Engineering, 2014, 14(8): 265-268.(in Chinese)
    [72] 刘琬辰,黄晓明.基于图像处理的沥青路面构造深度评价方法的优化研究[J].北方交通,2013(3):9-13.

    LIU Wan-chen, HUANG Xiao-ming. Optimization research of the asphalt pavement surface texture evaluation based on digital image[J]. Northern Communications, 2013(3): 9-13.(in Chinese)
    [73] 王景彬.高速公路沥青路面检测方法及注意事项探究[J].建筑知识,2017(10):153-154.

    WANG Jing-bin. Study on detection methods and precautions of asphalt pavement of expressway[J]. Architectural Knowledge, 2017(10): 153-154.(in Chinese)
    [74] 宁斌权.基于数字图像技术的沥青路面构造深度的评价方法[J].装备技术,2017(7):143,65.

    NING Bin-quan. The evaluation method of asphalt pavement construction depth based on digital image technology[J]. Equipment Technology, 2017(7): 143, 65.(in Chinese)
    [75] CIGADA A, MANCOSU F, MANZONI S, et al. Laser-triangulation device for in-line measurement of road texture at medium and high speed[J]. Mechanical Systems and Signal Processing, 2010, 24(7): 2225-2234.
    [76] 周兴林,蒋难得,肖旺新,等.基于激光视觉的沥青路面构造深度测量方法[J].中国公路学报,2014,27(3):11-16.

    ZHOU Xing-lin, JIANG Nan-de, XIAO Wang-xin, et al. Measurement method for mean texture depth of asphalt pavement based on laser vision[J]. China Journal of Highway and Transport, 2014, 27(3): 11-16.(in Chinese)
    [77] 王旭东.沥青路面弯沉指标的探讨[J].公路交通科技,2015,32(1):1-12,24.

    WANG Xu-dong. Discussion of asphalt pavement deflection indicator[J]. Journal of Highway and Transportation Research and Development, 2015, 32(1): 1-12, 24.(in Chinese)
    [78] 胡 蓉.杭州市政道路动态弯沉检测及半刚性路面结构适用性分析[D].杭州:浙江大学,2014.

    HU Rong. Research on dynamic deflection testing and semi-rigid pavement structure applicability of Hangzhou municipal roads[D]. Hangzhou: Zhejiang University, 2014.(in Chinese)
    [79] 吴 玉,蒋 鑫,梁雪娇,等.轮载作用下典型沥青路面结构力学行为分析[J].西南交通大学学报,2017,52(3):563-570.

    WU Yu, JIANG Xin, LIANG Xue-jiao. Mechanical behaviors of typical asphalt pavement structures under wheel loads[J]. Journal of Southwest Jiaotong University, 2017, 52(3): 563-570.(in Chinese)
    [80] 李 盛,陈尚武,刘朝晖,等.旧水泥混凝土路面弯沉测试的若干问题研究[J].中南大学学报:自然科学版,2015,46(12):4713-4718.

    LI Sheng, CHEN Shang-wu, LIU Chao-hui, et al. Some problems on deflection test of old cement concrete pavement[J]. Journal of Central South University: Science and Technology, 2015, 46(12): 4713-4718.(in Chinese)
    [81] 周 岚,倪富键,王浩仰.基于弯沉盆的高速公路沥青混凝土路面结构状况评价研究[J].公路,2015(9):1-6.

    ZHOU Lan, NI Fu-jian, WANG Hao-yang. Research on evaluation of highway asphalt pavement structure based on deflection basin[J]. Highway, 2015(9): 1-6.(in Chinese)
    [82] 赵永胜.G207锡海线公路改建工程路基弯沉检测方法对比分析[J].黑龙江交通科技,2016(9):24-25.

    ZHAO Yong-sheng. Contrastive analysis of subgrade detection methods for Highway G207 Xihai Line reconstruction project[J]. Communications Science and Technology Heilongjiang, 2016(9): 24-25.(in Chinese)
    [83] 洪 亮,杨 帆,付 丽,等.前插式激光测距自动弯沉仪校准及贝克曼梁对比试验分析[J].交通标准化,2014,42(17):149-153,156.

    HONG Liang, YANG Fan, FU Li, et al. Contrast test analysis on front-insert type auto deflectometer with laser range meter and Benkelman beam method[J]. Transportation Standardization, 2014, 42(17): 149-153, 156.(in Chinese)
    [84] GEORGE V, KUMAR A. Studies on modulus of resilience using cyclic tri-axial test and correlations to PFWD, DCP and CBR[J]. International Journal of Pavement Engineering, 2016: 1-10.
    [85] CHAI G, MANOHARAN S, GOLDING A, et al. Evaluation of the traffic speed deflectometer data using simplified deflection model[J]. Transportation Research Procedia, 2016, 14: 3031-3039.
    [86] 郑佳麒.GPR信号处理技术研究及在道路沥青注浆评价中的应用[J].交通科技,2017(2):143-146.

    ZHENG Jia-qi. Research on GPR data processing and application on the evaluation of asphalt grouting[J]. Transportation Science and Technology, 2017(2): 143-146.(in Chinese)
    [87] AHMED M, TAREFDER R, MAJI A, et al. Variation of FWD modulus due to incorporation of GPR predicted layer thicknesses[C]∥IEEE. 15th International Conference on Ground Penetrating Radar. New York: IEEE, 2014: 345-350.
    [88] MARECOS V, FONTUL S, DE LURDES ANTUNES M. Evaluation of a highway pavement using non-destructive tests: falling weight deflectometer and ground penetrating radar[J]. Construction and Building Materials, 2017, 154: 1164-1172.
    [89] AHMED M U, TAREFDER R A. Incorporation of GPR and FWD into pavement mechanistic-empirical design[J]. Construction and Building Materials, 2017, 154: 1272-1282.
  • 加载中
计量
  • 文章访问数:  686
  • HTML全文浏览量:  17
  • PDF下载量:  1794
  • 被引次数: 0
出版历程
  • 刊出日期:  2017-10-20

目录

    /

    返回文章
    返回