留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速道岔弹性铁垫板刚度劣化规律及对提速的影响

王璞 王树国 葛晶 杨东升

王璞, 王树国, 葛晶, 杨东升. 高速道岔弹性铁垫板刚度劣化规律及对提速的影响[J]. 交通运输工程学报, 2021, 21(5): 74-83. doi: 10.19818/j.cnki.1671-1637.2021.05.006
引用本文: 王璞, 王树国, 葛晶, 杨东升. 高速道岔弹性铁垫板刚度劣化规律及对提速的影响[J]. 交通运输工程学报, 2021, 21(5): 74-83. doi: 10.19818/j.cnki.1671-1637.2021.05.006
WANG Pu, WANG Shu-guo, GE Jing, YANG Dong-sheng. Stiffness deterioration rule of elastic iron plate of high-speed turnout and its influence on speed increase[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 74-83. doi: 10.19818/j.cnki.1671-1637.2021.05.006
Citation: WANG Pu, WANG Shu-guo, GE Jing, YANG Dong-sheng. Stiffness deterioration rule of elastic iron plate of high-speed turnout and its influence on speed increase[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 74-83. doi: 10.19818/j.cnki.1671-1637.2021.05.006

高速道岔弹性铁垫板刚度劣化规律及对提速的影响

doi: 10.19818/j.cnki.1671-1637.2021.05.006
基金项目: 

国家自然科学基金项目 51808557

国家自然科学基金项目 51878661

详细信息
    作者简介:

    王璞(1988-),男,河北沧州人,中国铁道科学研究院集团有限公司副研究员,工学博士,从事铁路道岔研究

    通讯作者:

    王树国(1974-),男,山东聊城人,中国铁道科学研究院集团有限公司研究员,工学博士

  • 中图分类号: U213.2

Stiffness deterioration rule of elastic iron plate of high-speed turnout and its influence on speed increase

Funds: 

National Natural Science Foundation of China 51808557

National Natural Science Foundation of China 51878661

More Information
  • 摘要: 对高速道岔弹性铁垫板的伤损发展及刚度演变过程进行了跟踪试验;基于实测数据,建立了车辆-道岔耦合动力学计算模型,分析了弹性铁垫板刚度劣化对车辆-道岔动力性能的影响,研究了刚度劣化状态下高速道岔对进一步提升运营速度的适应性。研究结果表明:随着高速道岔弹性铁垫板的长期使用,出现橡胶老化、开裂、分离、脱落,铁件锈蚀等伤损;有砟、无砟道岔铁垫板动静刚度比变化均较小,但静刚度均有所增大,有砟道岔铁垫板静刚度初期即有明显变化,上道3年增幅可超60%;普通地带无砟道岔铁垫板静刚度最大可增加30%,刚度变化小于有砟道岔;高寒、多风沙地带无砟道岔铁垫板静刚度变化较快;高速道岔弹性铁垫板刚度的逐渐劣化会对动力性能产生影响;刚度劣化状态下岔区钢轨变形减小,轮轨动力冲击作用增大,安全性参数均有提高;车辆和轮对的运动轨迹基本不变,但轮对振动加剧,车体振动也有加剧的趋势;高速道岔弹性铁垫板刚度劣化状态下,运营速度的提升会导致车辆-道岔系统动力性能进一步劣化,安全和疲劳性能裕量进一步减小,刚度劣化会使高速道岔对提速的适应性下降。扩大提速范围须重点关注道岔区弹性铁垫板刚度劣化情况,对弹性铁垫板进行适当更换,确保行车安全平稳。

     

  • 图  1  长期服役条件下铁垫板伤损

    Figure  1.  Damages of iron plate under long-term service

    图  2  有砟道岔弹性铁垫板刚度变化

    Figure  2.  Stiffness changes of elastic iron plate of ballast turnout

    图  3  无砟道岔弹性铁垫板刚度变化

    Figure  3.  Stiffness changes of elastic iron plate of ballastless turnout

    图  4  高速车辆动力学模型

    Figure  4.  Dynamics model of high-speed vehicle

    图  5  轮轨接触计算模型

    Figure  5.  Calculation model of wheel-rail contact

    图  6  岔区变截面钢轨模型

    Figure  6.  Model of rail with variable cross-sections in turnout zone

    图  7  高速道岔动力学模型

    Figure  7.  Dynamics model of high-speed turnout

    图  8  弹性铁垫板刚度劣化对动力学性能的影响

    Figure  8.  Influences of stiffness deterioration of elastic iron plate on dynamics performance

    图  9  刚度劣化状态下速度提升对动力学性能的影响

    Figure  9.  Influences of speed increase on dynamics performance under deteriorated stiffness

    表  1  有砟道岔弹性铁垫板刚度测试结果

    Table  1.   Stiffness test result of elastic iron plate of ballast turnout

    线路 序号 服役年限 测试区段行车速度/(km·h-1) 静刚度/(kN·mm-1) 动静刚度比
    线路1 1 7.3 250 89.55 1.33
    2 77.72 1.32
    线路2 1 6.6 250 66.36 1.32
    2 55.28 1.34
    3 1.0 51.02 1.26
    4 55.09 1.21
    5 2.0 55.29 1.42
    6 63.67 1.44
    7 2.8 77.00 1.45
    8 73.50 1.35
    线路3 1 2.5 200 62.89 1.39
    2 64.49 1.35
    3 63.53 1.29
    线路4 1 8.0 160 61.10 1.31
    2 66.22 1.35
    下载: 导出CSV

    表  2  无砟道岔弹性铁垫板刚度测试结果

    Table  2.   Stiffness test result of elastic iron plate of ballastless turnout

    线路 序号 服役年限 测试区段行车速度/(km·h-1) 静刚度/(kN·mm-1) 动静刚度比
    线路1 1 7.3 250 29.61 1.17
    2 28.17 1.18
    线路5 1 7.2 300 30.50 1.27
    2 31.50 1.24
    线路6 1 1.0 200 24.31 1.27
    2 23.41 1.44
    3 1.8 34.16 1.27
    4 32.37 1.23
    线路7 1 0.4 250 25.04 1.20
    2 24.68 1.23
    3 1.0 26.32 1.17
    4 27.52 1.16
    5 1.8 35.16 1.21
    6 36.44 1.21
    7 2.8 37.10 1.23
    8 34.40 1.23
    线路8 1 5.9 300 33.30 1.24
    2 37.55 1.37
    下载: 导出CSV
  • [1] 王平, 陈嵘, 徐井芒, 等. 高速铁路道岔系统理论与工程实践研究综述[J]. 西南交通大学学报, 2016, 51(2): 357-372. doi: 10.3969/j.issn.0258-2724.2016.02.015

    WANG Ping, CHEN Rong, XU Jing-mang, et al. Theories and engineering practices of high-speed railway turnout system: survey and review[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 357-372. (in Chinese) doi: 10.3969/j.issn.0258-2724.2016.02.015
    [2] 王树国, 葛晶, 王猛, 等. 高速道岔关键技术试验研究[J]. 铁道学报, 2015, 37(1): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201501016.htm

    WANG Shu-guo, GE Jing, WANG Meng, et al. Experimental study on key technologies of high-speed turnout[J]. Journal of the China Railway Society, 2015, 37(1): 77-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201501016.htm
    [3] 李金城, 丁军君, 杨九河, 等. 高速道岔发展及研究现状分析[J]. 铁道标准设计, 2020, 64(3): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202003010.htm

    LI Jin-cheng, DING Jun-jun, YANG Jiu-he, et al. Analysis of the development and research status of high-speed turnout[J]. Railway Standard Design, 2020, 64(3): 54-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202003010.htm
    [4] 蔡小培, 张乾, 万洪波, 等. 高速铁路64 m主跨桥上无缝道岔检算与结构优化[J]. 铁道工程学报, 2020, 37(9): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202009003.htm

    CAI Xiao-pei, ZHANG Qian, WAN Hong-bo, et al. Checking and structure optimization of welded turnout on 64 m- span bridge in high speed railway[J]. Journal of Railway Engineering Society, 2020, 37(9): 12-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202009003.htm
    [5] BLANCO-SAURA A E, VELARTE-GONZÁLEZ J L, RIBES-LLARIO F, et al. Study of the dynamic vehicle-track interaction in a railway turnout[J]. Multibody System Dynamics, 2018, 43: 21-36. doi: 10.1007/s11044-017-9579-2
    [6] 谭晓春, 罗雁云. 高速道岔辙叉区动力响应仿真分析[J]. 科学技术与工程, 2007, 7(23): 6252-6256. doi: 10.3969/j.issn.1671-1815.2007.23.064

    TAN Xiao-chun, LUO Yan-yun. Dynamic analysis on sharing pads of high-speed turnout[J]. Science Technology and Engineering, 2007, 7(23): 6252-6256. (in Chinese) doi: 10.3969/j.issn.1671-1815.2007.23.064
    [7] 辛涛. 高速铁路高架桥上无砟道岔动力特性研究[D]. 北京: 北京交通大学, 2011.

    XIN Tao. Study on dynamic characteristics of ballastless turnout on high-speed railway bridge[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese)
    [8] 闻方宇. 基于ANSYS/DYNA的高速动车道岔通过轮轨动力研究[D]. 北京: 北京交通大学, 2012.

    WEN Fang-yu. Study on wheel-rail dynamic interactions for high-speed vehicle negotiating turnout based on ANSYS/DYNA[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese)
    [9] 张志良, 史海欧, 袁泉, 等. 地铁道岔侧向速度提升和低磨耗结构设计研究[J]. 铁道建筑, 2021, 61(6): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202106029.htm

    ZHANG Zhi-liang, SHI Hai-ou, YUAN Quan, et al. Research on structure design of increasing passing speed and low wear in the diverging route of metro turnouts[J]. Railway Engineering, 2021, 61(6): 129-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202106029.htm
    [10] 陈小平, 王平, 张瑶. 250 km/h客运专线无砟道岔的合理轨道刚度[J]. 铁道工程学报, 2010, 27(7): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201007007.htm

    CHEN Xiao-ping, WANG Ping, ZHANG Yao. The reasonable stiffness of ballastless track turnout of 250 km/h passenger dedicated line[J]. Journal of Railway Engineering Society, 2010, 27(7): 25-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201007007.htm
    [11] 孙加林. 重载铁路道岔区轨道刚度的分布及均匀化[J]. 中国铁道科学, 2017, 38(3): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201703003.htm

    SUN Jia-lin. Distribution and homogenization of track stiffness in turnout area of heavy haul railway[J]. China Railway Science, 2017, 38(3): 19-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201703003.htm
    [12] 张艳平, 姚力, 刘大园. 城市轨道交通线路道岔区轨道刚度分布特征及均匀化研究[J]. 城市轨道交通研究, 2014, 17(9): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201409013.htm

    ZHANG Yan-ping, YAO Li, LIU Da-yuan. Study on distribution and homogenization of turnout stiffness for urban rail transit[J]. Urban Mass Transit, 2014, 17(9): 29-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201409013.htm
    [13] 曾志平, 陈秀方, 余志武, 等. 直逆向过岔列车与桥上道岔耦合振动影响因素分析[J]. 中南大学学报(自然科学版), 2008, 39(4): 856-861. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200804041.htm

    ZENG Zhi-ping, CHEN Xiu-fang, YU Zhi-wu, et al. Analysis of influence of some factors on train-turnout on bridge coupling vibration with train running in main direction[J]. Journal of Central South University (Science and Technology), 2008, 39(4): 856-861. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200804041.htm
    [14] 费维周. 道岔区刚度均匀化方法的研究[J]. 铁道工程学报, 2013(7): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201307006.htm

    FEI Wei-zhou. Research on method for stiffness homogenization in turnout area[J]. Journal of Railway Engineering Society, 2013(7): 28-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201307006.htm
    [15] 钱坤, 王树国, 王猛, 等. 重载铁路12号道岔轨道刚度均匀化研究[J]. 铁道建筑, 2016, 56(1): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201601017.htm

    QIAN Kun, WANG Shu-guo, WANG Meng, et al. Research on track stiffness homogenization for heavy haul railway No. 12 turnout[J]. Railway Engineering, 2016, 56(1): 67-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201601017.htm
    [16] 陈嵘, 王平. 75 kg/m钢轨12号高锰钢固定辙叉单开道岔刚度均匀化设计研究[J]. 铁道标准设计, 2012(8): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201208002.htm

    CHEN Rong, WANG Ping. Stiffness homogenization of No. 12 single turnout with fixed frog and high manganese steel used in 75 kg/m rail[J]. Railway Standard Design, 2012(8): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201208002.htm
    [17] 沈彬然, 孙宏友, 徐井芒, 等. 有轨电车6号单开道岔刚度均匀化研究[J]. 铁道建筑, 2015, 55(12): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201512033.htm

    SHEN Bin-ran, SUN Hong-you, XU Jing-mang, et al. Study on stiffness homogenization of No. 6 simple turnout for tram[J]. Railway Engineering, 2015, 55(12): 116-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201512033.htm
    [18] 孙宏友, 王平, 张东风, 等. 整体道床60 kg/m钢轨12号5 m间距交叉渡线道岔刚度均匀化探讨[J]. 铁道标准设计, 2015(1): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201501007.htm

    SUN Hong-you, WANG Ping, ZHANG Dong-feng, et al. Approach to stiffness homogenization of No. 12 crossover turnout with integrated bed and 5 m spacing used in 60 kg/m rail[J]. Railway Standard Design, 2015(1): 25-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201501007.htm
    [19] 侯茂锐, 胡晓依, 宗仁莉, 等. 高速动车组转臂定位橡胶节点刚度对车辆动力学性能影响[J]. 中国铁道科学, 2021, 42(4): 120-128. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202104014.htm

    HOU Mao-rui, HU Xiao-yi, ZONG Ren-li, et al. Influence of stiffness of arm positioning rubber node on vehicle dynamic performance of high-speed EMU[J]. China Railway Science, 2021, 42(4): 120-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202104014.htm
    [20] 孙丽霞, 李晓峰, 胡晓依, 等. 高速动车组车轮磨耗对轮轨接触关系及车辆动力学性能的影响[J]. 中国铁道科学, 2020, 41(6): 117-126. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202006013.htm

    SUN Li-xia, LI Xiao-feng, HU Xiao-yi, et al. Influence of wheel wear on wheel-rail contact relationship and vehicle dynamic performance of high-speed EMU[J]. China Railway Science, 2020, 41(6): 117-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202006013.htm
    [21] 中国铁道科学研究院. 车辆-轨道耦合动力学仿真模型验证方案[R]. 北京: 中国铁道科学研究院, 2016.

    China Academy of Railway Sciences. Verification scheme of vehicle-track coupling dynamics simulation model[R]. Beijing: China Academy of Railway Sciences, 2016. (in Chinese)
    [22] 邓学晖, 梁靓. CRH380B动车组车体高度差对动力学性能的影响[J]. 大连交通大学学报, 2017, 38(2): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201702006.htm

    DENG Xue-hui, LIANG Liang. Influence of vehicle hight difference on dynamic performance of CRH380B[J]. Journal of Dalian Jiaotong University, 2017, 38(2): 27-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201702006.htm
    [23] HERTZ H. Ueber die berührung fester elastische körper[J]. Journal Für Die Reine Und Angewandte Mathematik, 1882, 92: 156-171.
    [24] KALKERJ J. A fast algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11(1): 1-13.
    [25] 杨亮亮, 罗世辉, 傅茂海. 基于轮轨磨耗对30 t轴重货车车轮踏面优化研究[J]. 铁道学报, 2014, 36(8): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201408004.htm

    YANG Liang-liang, LUO Shi-hui, FU Mao-hai. Study on optimization of wheel profiles of freight car with 30 t axle load based on wheel-rail wear[J]. Journal of the China Railway Society, 2014, 36(8): 12-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201408004.htm
    [26] 任尊松, 孙守光. 道岔区轮轨接触几何关系研究[J]. 工程力学, 2008, 25(11): 223-230. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200811039.htm

    REN Zun-song, SUN Shou-guang. Study on the wheel/rail contact geometry relation of the turnout zone[J]. Engineering Mechanics, 2008, 25(11): 223-230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200811039.htm
    [27] 任尊松, 翟婉明, 王其昌. 车辆-道岔系统横向振动特性研究[J]. 铁道学报, 2000, 22(4): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200004007.htm

    REN Zun-song, ZHAI Wan-ming, WANG Qi-chang. Study on lateral dynamic characteristics of vehicle-turnout system[J]. Journal of the China Railway Society, 2000, 22(4): 28-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200004007.htm
    [28] 任尊松. 车辆—道岔系统动力学研究[D]. 成都: 西南交通大学, 2000.

    REN Zun-song. Research on vehicle-turnout system dynamics[D]. Chengdu: Southwest Jiaotong University, 2000. (in Chinese)
    [29] 骆焱, 侯爱滨. 时速350 km客运专线铁路可动心轨辙叉单开道岔的结构设计[J]. 铁道标准设计, 2009(5): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS200905009.htm

    LUO Yan, HOU Ai-bin. Design on movable-point frog crossing lateral turnout on passenger dedicated lines with a speed of 350 km/h[J]. Railway Standard Design, 2009(5): 19-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS200905009.htm
    [30] 曹洋, 王平, 赵卫华. 基于平面参数法的道岔线型设计研究[J]. 铁道建筑, 2011, 51(2): 101-103. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201102036.htm

    CAO Yang, WANG Ping, ZHAO Wei-hua. Study on turnout line-shape design based on plane parameters method[J]. Railway Engineering, 2011, 51(2): 101-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201102036.htm
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  4
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26
  • 网络出版日期:  2021-11-13
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回