留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机场跑道全波段不平整测试方法

钱劲松 岑业波 刘东亮 李军世 刘诗福

钱劲松, 岑业波, 刘东亮, 李军世, 刘诗福. 机场跑道全波段不平整测试方法[J]. 交通运输工程学报, 2021, 21(5): 84-93. doi: 10.19818/j.cnki.1671-1637.2021.05.007
引用本文: 钱劲松, 岑业波, 刘东亮, 李军世, 刘诗福. 机场跑道全波段不平整测试方法[J]. 交通运输工程学报, 2021, 21(5): 84-93. doi: 10.19818/j.cnki.1671-1637.2021.05.007
QIAN Jin-song, CEN Ye-bo, LIU Dong-liang, LI Jun-shi, LIU Shi-fu. Measurement method of all-wave airport runway roughness[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 84-93. doi: 10.19818/j.cnki.1671-1637.2021.05.007
Citation: QIAN Jin-song, CEN Ye-bo, LIU Dong-liang, LI Jun-shi, LIU Shi-fu. Measurement method of all-wave airport runway roughness[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 84-93. doi: 10.19818/j.cnki.1671-1637.2021.05.007

机场跑道全波段不平整测试方法

doi: 10.19818/j.cnki.1671-1637.2021.05.007
基金项目: 

国家重点研发计划项目 2018YFB1600200

国家自然科学基金项目 U1833123

中央高校基本科研业务费专项资金项目 22120190220

详细信息
    作者简介:

    钱劲松(1980-),男,安徽桐城人,同济大学教授,工学博士,从事道路与机场工程研究

  • 中图分类号: U416.2

Measurement method of all-wave airport runway roughness

Funds: 

National Key Research and Development Program of China 2018YFB1600200

National Natural Science Foundation of China U1833123

Fundamental Research Funds for the Central Universities 22120190220

More Information
  • 摘要: 结合车载式激光断面仪与全球导航卫星移动定位系统,提出了一种机场跑道全波段不平整测试方法;在济南遥墙国际机场进行了现场测试,采用重复试验与水准仪对该测试方法进行了可靠性验证;利用ADAMS/Aircraft软件建立了B737-800虚拟样机模型,进行了实测跑道不平整数据下的飞机滑跑仿真,探究了不同检测方法、滑跑速度、飞机位置下实测道面数据特征对飞机振动响应的影响。研究结果表明:所提出的测试方法可获得道面全波段不平整数据,弥补了激光断面仪难以捕获14 m以上波长的缺陷;当速度为80 km·h-1时,全波段不平整道面下飞机振动响应波动幅值分别为长波不平整和短波不平整下的1.25~2.39倍和1.19~1.85倍,说明仅考虑道面长波或短波不平整将低估飞机在实际不平整条件下的振动响应;随着飞机滑跑速度的增大,全波段不平整与短波不平整条件下的飞机振动加速度差别逐渐增大,而动载系数差值则呈现先增大后减小的趋势,在速度为160 km·h-1时达到最大,说明飞机在高速滑行中道面长波不平整的影响更为明显;全波段不平整相比短波不平整条件下驾驶舱加速度增幅平均比重心处大0.062 m·s-2,前起落架动载系数增幅比主起落架平均大0.039,表明长波不平整对飞机前部振动的影响比重心处大,且随着滑行速度增大,这一差值先增大后减小,加速度的差值在80~120 km·h-1时最明显,峰值约为0.078 m·s-2,而动载系数的差值在160 km·h-1达到0.062的峰值。

     

  • 图  1  全波段检测方法的工作原理

    Figure  1.  Working principle of all-wave measuring method

    图  2  济南遥墙国际机场中心线

    Figure  2.  Center line of Jinan Yaoqiang International Airport

    图  3  水准仪与GNSS相对高程测试结果

    Figure  3.  Measuring results of relative elevations of level and GNSS

    图  4  水准仪与GNSS相对偏差测试结果

    Figure  4.  Measuring results of relative deviations of level and GNSS

    图  5  跑道三维高程

    Figure  5.  Three-dimensional elevations of runway

    图  6  纵断面检测结果

    Figure  6.  Measuring results of profiles

    图  7  道面数据的功率谱密度

    Figure  7.  PSD of runway data

    图  8  ADAMS/Aircraft建模过程

    Figure  8.  Modeling process of ADAMS/Aircraft

    图  9  不同仿真方法下B737-800驾驶舱加权加速度均方根

    Figure  9.  Weighted acceleration root-mean-squares in cookpit of B737-800 using different simulation methods

    图  10  不同检测方法下飞机振动响应

    Figure  10.  Aircraft vibration responses using different measuring methods

    图  11  全波段与短波的飞机振动响应统计值结果

    Figure  11.  Statistical results of aircraft vibration responses under all wave and short wave

    图  12  全波段与短波的飞机振动响应增幅

    Figure  12.  Increments of aircraft vibration responses under all wave and short wave

    表  1  激光断面仪精度

    Table  1.   Precisions of laser profiler

    传感器 误差
    激光位移传感器 <0.05 mm
    加速度计 (-1%, 1%)
    距离传感器 <0.05%
    下载: 导出CSV

    表  2  B737-800模型参数

    Table  2.   Model parameters of B737-800

    参数类别 参数项 参数值
    飞机质量/kg 最大滑行质量 78 472
    最大起飞质量 78 245
    最大降落质量 65 317
    重心坐标/m 横向坐标 -1.3
    纵向坐标 3.0
    转动惯量/(kg·m2) 横轴的转动惯量 1 866 711
    纵轴的转动惯量 3 394 953
    竖轴的转动惯量 5 097 558
    机翼属性 翼展参考面积/m2 123.55
    翼展长度/m 35.97
    气动弦长/m 4.36
    下载: 导出CSV
  • [1] 袁捷, 吴逸凡, 张哲恺, 等. 不平整激励下飞机滑跑动力响应的影响因素[J]. 中国民航大学学报, 2021, 39(1): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMH202101008.htm

    YUAN Jie, WU Yi-fan, ZHANG Zhe-kai, et al. Influencing factors of aircraft dynamic response under unevenness excitation[J]. Journal of Civil Aviation University of China, 2021, 39(1): 34-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMH202101008.htm
    [2] 吴庆雄, 陈宝春, 奚灵智. 路面平整度PSD和IRI评价方法比较[J]. 交通运输工程学报, 2008, 8(1): 36-41. http://jtysgcxb.xml-journal.net/article/id/200801009

    WU Qing-xiong, CHEN Bao-chun, XI Ling-zhi. Comparison of PSD method and IRI method for road roughness evaluation[J]. Journal of Traffic and Transportation Engineering, 2008, 8(1): 36-41. (in Chinese) http://jtysgcxb.xml-journal.net/article/id/200801009
    [3] EMERY S, HEFER A, HORAK E. Roughness of runways and significance of appropriate specifications and measurement[C]// CAPSA. 11th Conference of Asphalt Pavements in Southern Africa. Sun City: CAPSA, 2015: 1-10.
    [4] 周晓青, 孙立军. 国际平整度指数与行驶车速的关系[J]. 同济大学学报(自然科学版), 2005, 33(10): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200510008.htm

    ZHOU Xiao-qing, SUN Li-jun. Relationship between international roughness index and velocity of quarter car[J]. Journal of Tongji University (Natural Science), 2005, 33(10): 47-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200510008.htm
    [5] VAN GELDER P A, STET M J A. Evaluation methods for longitudinal evenness of runway pavements[R]. Amsterdam: National Aerospace Laboratory, 2009.
    [6] LOPRENCIPE G, ZOCCALI P. Comparison of methods for evaluating airport pavement roughness[J]. International Journal of Pavement Engineering, 2017, 20(7): 782-791.
    [7] 程国勇, 郭稳厚, 雷亚伟. 机场道面平整度评价技术进展及发展方向[J]. 中国民航大学学报, 2016, 34(2): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMH201602009.htm

    CHENG Guo-yong, GUO Wen-hou, LEI Ya-wei. Progress and developing trend of airport pavement roughness evaluation technology[J]. Journal of Civil Aviation University of China, 2016, 34(2): 36-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMH201602009.htm
    [8] 程国勇, 郭稳厚. 基于多自由度飞机模型的机场道面平整度评价方法[J]. 南京航空航天大学学报, 2016, 48(4): 606-614. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201604024.htm

    CHENG Guo-yong, GUO Wen-hou. Airport pavement roughness evaluation based on three-degree-of-freedom airport model[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2016, 48(4): 606-614. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201604024.htm
    [9] 凌建明, 刘诗福, 袁捷, 等. 采用IRI评价机场道面平整度的适用性[J]. 交通运输工程学报, 2017, 17(1): 20-27. http://jtysgcxb.xml-journal.net/article/id/200801009

    LING Jian-ming, LIU Shi-fu, YUAN Jie, et al. Applicability of IRI based evaluation of airport pavement roughness[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 20-27. (in Chinese) http://jtysgcxb.xml-journal.net/article/id/200801009
    [10] 王大为, 王宠惠, STEINAUER B, 等. 德国不限速高速公路路面平整度评价方法综述[J]. 中国公路学报, 2019, 32(4): 105-113, 129. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201904008.htm

    WANG Da-wei, WANG Chong-hui, STEINAUER B, et al. Overview on evaluation methods of pavement evenness for pavements without speed limitations in Germany[J]. China Journal of Highway and Transport, 2019, 32(4): 105-113, 129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201904008.htm
    [11] 蔡宛彤, 种小雷, 王海服, 等. 基于ADAMS的机场道面平整度评价方法[J]. 空军工程大学学报(自然科学版), 2014, 15(1): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201401005.htm

    CAI Wan-tong, CHONG Xiao-lei, WANG Hai-fu, et al. An evaluation method for roughness of airport pavement based on ADAMS[J]. Journal of Air Force Engineering University (Natural Science Edition), 2014, 15(1): 15-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201401005.htm
    [12] LIU Shi-fu, LING Jian-ming, TIAN Yu, et al. Assessment of aircraft landing gear cumulative stroke to develop a new runway roughness evaluation index[J]. International Journal of Pavement Engineering, 2021, DOI: 10.1080/10298436.2021.1910823.
    [13] 凌建明, 刘诗福, 李萌, 等. 波音平整度评价方法的局限性分析[J]. 同济大学学报(自然科学版), 2018, 46(8): 1035-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201808006.htm

    LING Jian-ming, LIU Shi-fu, LI Meng, et al. Application limitation of boeing bump to evaluation runway roughness[J]. Journal of Tongji University (Natural Science), 2018, 46(8): 1035-1041. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201808006.htm
    [14] Federal Aviation Administration. Guidelines and procedures for measuring airfield pavement roughness: advisory circular[R]. Washington DC: Federal Aviation Administration, 2009.
    [15] EL-KORCHI T, BACON J, TURO M, et al. Ride quality assessment with pavement profiling devices[J]. Transportation Research Record, 2002(1806): 140-148.
    [16] GERARDI M, LARKIN A. Profile measurement, smoothness acceptance, and the integration of new profile measurement technology[C]//ASCE. 2019 International Airfield and Highway Pavements Conference. New York: ASCE, 2019: 414-423.
    [17] DONG Qin-xi, HACHIYA Y, ENDO K, et al. Airport pavement roughness evaluation based on aircraft response[C]//SPIE. Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems Ⅲ. Bellingham: SPIE, 2004: 118-126.
    [18] HUDSPETH S, STAPLETON D, BALLEW J, et al. Boeing 737-800 final surface roughness study data collection[R]. Washington DC: Federal Aviation Administration, 2017.
    [19] Federal Aviation Administration. Airbus A330-200 final surface roughness study data collection[R]. Washington DC: Federal Aviation Administration, 2020.
    [20] 刘春梅. 考虑长轴距效应的道面平整度对飞机滑行振动的影响[D]. 天津: 中国民航大学, 2020.

    LIU Chun-mei. The influence of pavement roughness considering long-wheelbase effect on taxing aircraft vibration[D]. Tianjin: Civil Aviation University of China, 2020. (in Chinese)
    [21] BARBARELLA M, DE BLASIIS M R, FIANI M. Terrestrial laser scanner for the analysis of airport pavement geometry[J]. International Journal of Pavement Engineering, 2019, 20(4): 466-480.
    [22] SONG I, LARKIN A, AUGUSTYN S. Profile data comparisons for airfield runway pavements[C]//Federal Aviation Administration. Proceeding of the 2014 FAA Airport Technology Transfer Conference. Washington DC: Federal Aviation Administration, 2014: 1-15.
    [23] 贺凯飞. 航空重力测量中GNSS动态定位与测速研究[J]. 测绘学报, 2015, 44(10): 1179. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201510019.htm

    HE Kai-fei. GNSS kinematic position and velocity determination for airborne gravimetry[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10): 1179. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201510019.htm
    [24] 袁捷, 史恩辉, 雷电, 等. 上海虹桥国际机场飞机轮迹横向偏移规律研究[J]. 中国民航大学学报, 2015, 33(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMH201502001.htm

    YUAN Jie, SHI En-hui, LEI Dian, et al. Lateral deviation pattern and model of aircraft wheel path on Shanghai Hongqiao International Airport[J]. Journal of Civil Aviation University of China, 2015, 33(2): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMH201502001.htm
    [25] 朱立国, 陈俊君, 袁捷, 等. 基于虚拟样机的飞机滑跑荷载[J]. 同济大学学报(自然科学版), 2016, 44(12): 1873-1879, 1888. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201612011.htm

    ZHU Li-guo, CHEN Jun-jun, YUAN Jie, et al. Taxiing load analysis of aircrafts based on virtual prototype[J]. Journal of Tongji University (Natural Science), 2016, 44(12): 1873-1879, 1888. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201612011.htm
    [26] LIU Shi-fu, LING Jian-ming, YUAN Jie, et al. Landing gear cumulative stroke-based runway roughness evaluation[C]// TRB. 97th Annual Meeting of the Transportation Research Board. Washington DC: TRB, 2018: 1-18.
    [27] SHI Xin-gang, CAI Liang-cai, WANG Guan-hu, et al. A new aircraft taxiing model based on filtering white noise method[J]. IEEE Access, 2020, 8: 10070-10087.
    [28] CHEN Y H, CHOU C P. Effects of airport pavement-profile wavelength on aircraft vertical responses[J]. Transportation Research Record, 2004(1889): 83-93.
    [29] 陈俊君. 基于虚拟样机的机场道面平整度评价研究[D]. 上海: 同济大学, 2017.

    CHEN Jun-jun. Study of airport pavement roughness evaluation based on virtual prototype[D]. Shanghai: Tongji University, 2017. (in Chinese)
    [30] DURÁN J B C, JÚNIOR J L F. Airport pavement roughness evaluation based on cockpit and center of gravity vertical accelerations[J]. Transportes, 2020, 28(1): 147-159.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  4
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-23
  • 网络出版日期:  2021-11-13
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回