留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速铁路桥梁-轨道体系检测监测与行车安全研究进展

勾红叶 刘畅 班新林 孟鑫 蒲黔辉

勾红叶, 刘畅, 班新林, 孟鑫, 蒲黔辉. 高速铁路桥梁-轨道体系检测监测与行车安全研究进展[J]. 交通运输工程学报, 2022, 22(1): 1-23. doi: 10.19818/j.cnki.1671-1637.2022.01.001
引用本文: 勾红叶, 刘畅, 班新林, 孟鑫, 蒲黔辉. 高速铁路桥梁-轨道体系检测监测与行车安全研究进展[J]. 交通运输工程学报, 2022, 22(1): 1-23. doi: 10.19818/j.cnki.1671-1637.2022.01.001
GOU Hong-ye, LIU Chang, BAN Xin-lin, MENG Xin, PU Qian-hui. Research progress of detection, monitoring and running safety of bridge-track system for high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 1-23. doi: 10.19818/j.cnki.1671-1637.2022.01.001
Citation: GOU Hong-ye, LIU Chang, BAN Xin-lin, MENG Xin, PU Qian-hui. Research progress of detection, monitoring and running safety of bridge-track system for high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 1-23. doi: 10.19818/j.cnki.1671-1637.2022.01.001

高速铁路桥梁-轨道体系检测监测与行车安全研究进展

doi: 10.19818/j.cnki.1671-1637.2022.01.001
基金项目: 

国家自然科学基金项目 52172374

国家自然科学基金项目 51878563

四川省杰出青年科技人才项目 2022JDJQ0016

中国铁道科学研究院集团有限公司科研项目 2021YJ058

详细信息
    作者简介:

    勾红叶(1983-),女, 四川绵阳人, 西南交通大学教授, 工学博士, 从事高速铁路桥梁-轨道变形映射与行车安全研究

  • 中图分类号: U24

Research progress of detection, monitoring and running safety of bridge-track system for high-speed railway

Funds: 

National Natural Science Foundation of China 52172374

National Natural Science Foundation of China 51878563

Sichuan Outstanding Youth Science and Technology Talent Project 2022JDJQ0016

Project of Science and Technology of China Academy of Railway Sciences Co., Ltd. 2021YJ058

More Information
  • 摘要: 为了提升桥梁-轨道结构服役安全性能,保证复杂环境条件下高速铁路结构适应性和行车安全舒适性,研究了高速铁路桥梁-轨道体系检测监测装备的改进与优化,分析了桥梁-轨道结构服役性能动态演变规律,总结了复杂条件下桥上行车安全评价与预测方法,展望了未来研究重点与方向。研究结果表明:在桥梁-轨道体系检测监测技术方面,现有研究聚焦于传统检测监测装备的优化和智能化技术与损伤识别方法的深度融合,核心目标是提高桥梁-轨道结构检测监测的效率、精度与标准化程度,实现基础设施服役状态的精准评判与预测;在桥梁-轨道空间变形映射关系方面,考虑基础结构各部分交互影响的变形映射模型能够准确描述结构层间界面状态演变引起的轨面几何形态变化趋势、发展规律和频谱特性,但目前尚缺乏对高速铁路桥梁-轨道协同设计和变形智能调控装置的深入研究;结构服役性能演化研究大多基于理想化的弹塑性本构模型,且对于服役性能劣化行为与规律的研究局限在特定服役环境;正在逐步深入开展基于列车-轨道-桥梁动力相互作用理论的长期服役条件下高速铁路桥梁行车安全性研究,建立基于不同指标体系的行车安全评价准则;充分利用桥梁-轨道体系检测监测数据,加强复杂服役环境下桥梁-轨道结构性能演变机制和损伤失效机理研究,信息更新条件下具有高可移植性的行车安全性智能评价与预测新方法是今后重点关注的研究方向。

     

  • 图  1  基于差分干涉微波雷达的天兴洲长江大桥拉索检测[16]

    Figure  1.  Cable detection of Tianxingzhou Yangtze River Bridge based on differential interferometric microwave radar[16]

    图  2  基于光声信号的钢轨表面缺陷检测模型与结果[32]

    Figure  2.  Detection model and result of rail surface defect based on photoacoustic signal[32]

    图  3  钢轨表面缺陷检测[38]

    Figure  3.  Detection of rail surface defect[38]

    图  4  桥梁附加变形下板底脱空对钢轨变形的影响[68]

    Figure  4.  Influence of void under slab on track deformation under additional deformation of bridge[68]

    图  5  温度梯度作用下无砟轨道层间离缝发展过程[89]

    Figure  5.  Development process of ballastless track delamination under effect of positive temperature gradient[89]

    图  6  列车荷载作用下无砟轨道层间离缝演化过程[89]

    Figure  6.  Evolution process of ballastless track delamination under impact of train load[89]

    图  7  桥墩沉降与列车动力响应间的映射关系[117]

    Figure  7.  Mapping relationship between bridge pier settlement and dynamic response of high-speed train[117]

    图  8  列车-无砟轨道-桥梁缩尺模型振动台试验[135]

    Figure  8.  Shaking table test of vehicle-ballastless track-bridge scale model[135]

    表  1  基于桥梁附加变形的多指标桥上行车安全评价准则[106]

    Table  1.   Multi-index running safety evaluation criteria based on bridge's additional deformation[106]

    桥梁附加变形评价准则 轨道结构无损伤 层间联结失效(板底脱空)
    映射关系法 参数讨论法
    桥墩沉降/mm 22.6 21.7 17.9
    梁端转角/10-4rad 9.2 7.9 5.8
    梁体错台/mm 7.8 7.3 6.8
    徐变上拱/mm 17.2 16.7 10.9
    下载: 导出CSV
  • [1] 勾红叶. 高速铁路桥梁-轨道变形映射与行车安全[M]. 北京: 科学出版社, 2020.

    GOU Hong-ye. Bridge-Track Deformation Mapping and Traffic Safety of High-Speed Railway[M]. Beijing: Science Press, 2020. (in Chinese)
    [2] 翟婉明, 赵春发, 夏禾, 等. 高速铁路基础结构动态性能演变及服役安全的基础科学问题[J]. 中国科学: 技术科学, 2014, 44(7): 645-660. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407002.htm

    ZHAI Wan-ming, ZHAO Chun-fa, XIA He, et al. Basic scientific issues on dynamic performance evolution of the high-speed railway infrastructure and its service safety[J]. Scientia Sinica(Technologica), 2014, 44(7): 645-660. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407002.htm
    [3] 翟婉明, 赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报, 2016, 51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001

    ZHAI Wan-ming, ZHAO Chun-fa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. (in Chinese) doi: 10.3969/j.issn.0258-2724.2016.02.001
    [4] 蒋丽忠, 周旺保, 魏标, 等. 地震作用下高速铁路车-轨-桥系统安全研究进展[J]. 土木工程学报, 2020, 53(9): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202009001.htm

    JIANG Li-zhong, ZHOU Wang-bao, WEI Biao, et al. Research progress of train-track-bridge system safety of high-speed railway under earthquake action[J]. China Civil Engineering Journal, 2020, 53(9): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202009001.htm
    [5] 李永乐, 向活跃, 强士中. 风-列车-桥系统耦合振动研究综述[J]. 中国公路学报, 2018, 31(7): 24-37. doi: 10.3969/j.issn.1001-7372.2018.07.002

    LI Yong-le, XIANG Huo-yue, QIANG Shi-zhong. Review on coupling vibration of wind-vehicle-bridge systems[J]. China Journal of Highway and Transport, 2018, 31(7): 24-37. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.07.002
    [6] 李小珍, 辛莉峰, 王铭, 等. 车-桥耦合振动2019年度研究进展[J]. 土木与环境工程学报, 2020, 42(5): 126-138. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202005012.htm

    LI Xiao-zhen, XIN Li-feng, WANG Ming, et al. State-of-the-art review of vehicle-bridge interactions in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42(5): 126-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202005012.htm
    [7] 钟继卫, 王波, 王翔, 等. 桥梁智能检测技术研究与应用[J]. 桥梁建设, 2019, 49(S1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS2019S1001.htm

    ZHONG Ji-wei, WANG Bo, WANG Xiang, et al. Research of bridge intelligent inspection technology and application[J]. Bridge Construction, 2019, 49(S1): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS2019S1001.htm
    [8] 战家旺, 闫宇智, 强伟亮, 等. 一种基于频响函数相似性的铁路桥墩损伤识别方法[J]. 中国铁道科学, 2018, 39(2): 37-43. doi: 10.3969/j.issn.1001-4632.2018.02.05

    ZHAN Jia-wang, YAN Yu-zhi, QIANG Wei-liang, et al. Damage identification method for railway pier based on frequency response function similarity[J]. China Railway Science, 2018, 39(2): 37-43. (in Chinese) doi: 10.3969/j.issn.1001-4632.2018.02.05
    [9] 闫宇智, 战家旺, 张楠, 等. 基于车激响应的桥梁支座脱空病害识别方法研究[J]. 桥梁建设, 2020, 50(2): 19-24. doi: 10.3969/j.issn.1003-4722.2020.02.004

    YAN Yu-zhi, ZHAN Jia-wang, ZHANG Nan, et al. Study of methods to identify bridge bearing disengagement based on vehicle-excited responses[J]. Bridge Construction, 2020, 50(2): 19-24. (in Chinese) doi: 10.3969/j.issn.1003-4722.2020.02.004
    [10] 姜会增. 基于数字图像处理的铁路桥梁裂缝检测技术[J]. 铁道建筑, 2016, 56(5): 82-86. doi: 10.3969/j.issn.1003-1995.2016.05.18

    JIANG Hui-zeng. Railway bridge crack detection technology based on digital image processing[J]. Railway Engineering, 2016, 56(5): 82-86. (in Chinese) doi: 10.3969/j.issn.1003-1995.2016.05.18
    [11] 杨杰文, 章光, 陈西江, 等. 基于深度学习的较复杂背景下桥梁裂缝检测[J]. 铁道科学与工程学报, 2020, 17(11): 2722-2728. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202011002.htm

    YANG Jie-wen, ZHANG Guang, CHEN Xi-jiang, et al. Research on bridge crack detection based on deep learning under complex background[J]. Journal of Railway Science and Engineering, 2020, 17(11): 2722-2728. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202011002.htm
    [12] 李良福, 马卫飞, 李丽, 等. 基于深度学习的桥梁裂缝检测算法研究[J]. 自动化学报, 2019, 45(9): 1727-1742. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201909010.htm

    LI Liang-fu, MA Wei-fei, LI Li, et al. Research on detection algorithm for bridge cracks based on deep learning[J]. Acta Automatica Sinica, 2019, 45(9): 1727-1742. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201909010.htm
    [13] 张晶晶, 聂洪玉, 喻强. 基于多尺度输入图像渗透模型的桥梁裂缝检测[J]. 计算机工程, 2017, 43(2): 273-279. doi: 10.3969/j.issn.1000-3428.2017.02.046

    ZHANG Jing-jing, NIE Hong-yu, YU Qiang. Bridge crack detection based on percolation model with multi-scale input image[J]. Computer Engineering, 2017, 43(2): 273-279. (in Chinese) doi: 10.3969/j.issn.1000-3428.2017.02.046
    [14] 赵欣欣, 钱胜胜, 刘晓光. 基于卷积神经网络的铁路桥梁高强螺栓缺失图像识别方法[J]. 中国铁道科学, 2018, 39(4): 56-62. doi: 10.3969/j.issn.1001-4632.2018.04.09

    ZHAO Xin-xin, QIAN Sheng-sheng, LIU Xiao-guang. Image identification method for high-strength bolt missing on railway bridge based on convolution neural network[J]. China Railway Science, 2018, 39(4): 56-62. (in Chinese) doi: 10.3969/j.issn.1001-4632.2018.04.09
    [15] 刘小阳, 孙广通, 李峰, 等. 基于地基雷达的高铁简支箱梁运营性能检定[J]. 中国铁道科学, 2020, 41(1): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202001008.htm

    LIU Xiao-yang, SUN Guang-tong, LI feng, et al. Verification of operational performance for simply supported box girder in high speed railway based on GB-SAR[J]. China Railway Science, 2020, 41(1): 50-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202001008.htm
    [16] 王翔, 汪正兴. 高速铁路桥梁雷达非接触测试技术研究[J]. 铁道工程学报, 2020, 37(1): 50-54, 84. doi: 10.3969/j.issn.1006-2106.2020.01.009

    WANG Xiang, WANG Zheng-xing. Research on the radar non-contact testing technology of high-speed railway bridges[J]. Journal of Railway Engineering Society, 2020, 37(1): 50-54, 84. (in Chinese) doi: 10.3969/j.issn.1006-2106.2020.01.009
    [17] 史康, 何旭辉, 邹云峰, 等. 大跨度高速铁路桥梁健康监测系统研发[J]. 铁道科学与工程学报, 2015, 12(4): 737-742. doi: 10.3969/j.issn.1672-7029.2015.04.004

    SHI Kang, HE Xu-hui, ZOU Yun-feng, et al. Research and development of health monitoring system for long-span bridges of high-speed railways[J]. Journal of Railway Science and Engineering, 2015, 12(4): 737-742. (in Chinese) doi: 10.3969/j.issn.1672-7029.2015.04.004
    [18] 赵维刚, 王新敏, 杜彦良, 等. 常用跨度铁路桥梁运行状态分布式监测与预警技术[J]. 上海交通大学学报, 2015, 49(7): 1046-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201507023.htm

    ZHAO Wei-gang, WANG Xin-min, DU Yan-liang, et al. Distributed running state monitoring and pre-warning of common span railway bridges[J]. Journal of Shanghai Jiaotong University, 2015, 49(7): 1046-1051. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201507023.htm
    [19] 顾津申. 石济客专济南黄河桥健康监测系统总体设计[J]. 铁道工程学报, 2019, 36(4): 54-59. doi: 10.3969/j.issn.1006-2106.2019.04.011

    GU Jin-shen. General design of health monitoring system for the Yellow River Bridge of Shijiazhuang-Jinan passenger dedicated line[J]. Journal of Railway Engineering Society, 2019, 36(4): 54-59. (in Chinese) doi: 10.3969/j.issn.1006-2106.2019.04.011
    [20] 杨怀志. 高速铁路大型桥梁养护维修PHM系统应用初探[J]. 铁道建筑, 2017, 57(6): 12-16, 35. doi: 10.3969/j.issn.1003-1995.2017.06.03

    YANG Huai-zhi. Elementary discussion on application of PHM system for maintenance and repair in large bridges of high speed railway[J]. Railway Engineering, 2017, 57(6): 12-16, 35. (in Chinese) doi: 10.3969/j.issn.1003-1995.2017.06.03
    [21] LIU Ye, VOIGT T, WIRSTRÖM N, et al. ECOVIBE: on-demand sensing for railway bridge structural health monitoring[J]. IEEE Internet of Things Journal, 2019, 6(1): 1068-1078. doi: 10.1109/JIOT.2018.2867086
    [22] 赵有明. 高速铁路基础设施服役状态检测技术[J]. 铁道建筑, 2015, 55(10): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201510001.htm

    ZHAO You-ming. Detection technology of service state of high speed railway infrastructure[J]. Railway Engineering, 2015, 55(10): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201510001.htm
    [23] 王翔, 王波, 汪正兴. 高速铁路运营期基础沉降长期监测技术研究[J]. 铁道工程学报, 2017, 34(5): 11-14, 64. doi: 10.3969/j.issn.1006-2106.2017.05.003

    WANG Xiang, WANG Bo, WANG Zheng-xing. Research on the long-term monitoring technology of subgrade settlement for high-speed railway in operation period[J]. Journal of Railway Engineering Society, 2017, 34(5): 11-14, 64. (in Chinese) doi: 10.3969/j.issn.1006-2106.2017.05.003
    [24] 禚一, 王旭, 张军. 高速铁路沉降自动化监测系统SMAIS的研发及应用[J]. 铁道工程学报, 2015, 32(4): 10-15. doi: 10.3969/j.issn.1006-2106.2015.04.003

    ZHUO Yi, WANG Xu, ZHANG Jun. Development and application of automatic monitoring system SMAIS for settlement of high-speed railway[J]. Journal of Railway Engineering Society, 2015, 32(4): 10-15. (in Chinese) doi: 10.3969/j.issn.1006-2106.2015.04.003
    [25] 王少杰, 徐赵东, 李舒, 等. 基于钢轨应变监测的多跨铁路简支梁桥桥墩差异沉降识别[J]. 铁道学报, 2016, 38(3): 106-110. doi: 10.3969/j.issn.1001-8360.2016.03.015

    WANG Shao-jie, XU Zhao-dong, LI Shu, et al. Identification of differential settlement of piers for multi-span railway simply supported girder bridges based on track strain monitoring[J]. Journal of the China Railway Society, 2016, 38(3): 106-110. (in Chinese) doi: 10.3969/j.issn.1001-8360.2016.03.015
    [26] 姚冬, 陈东生, 陶凯, 等. 高速铁路基础设施综合检测监测技术探讨[J]. 铁道标准设计, 2020, 64(3): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202003008.htm

    YAO Dong, CHEN Dong-sheng, TAO Kai, et al. Discussions on comprehensive inspection and monitoring technologies for railway infrastructures[J]. Railway Standard Design, 2020, 64(3): 42-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202003008.htm
    [27] 门平, 董世运, 卢超, 等. 钢轨踏面低频超声表面波传播模式研究[J]. 仪器仪表学报, 2018, 39(3): 13-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201803002.htm

    MEN Ping, DONG Shi-yun, LU Chao, et al. Research on low-frequency acoustic surface wave propagation mode in rail treads[J]. Chinese Journal of Scientific Instrument, 2018, 39(3): 13-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201803002.htm
    [28] 贾中青, 张振振, 姬光荣. 激光诱导击穿光谱和激光超声技术在钢轨检测中的应用[J]. 中国海洋大学学报(自然科学版), 2019, 49(8): 142-146. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201908018.htm

    JIA Zhong-qing, ZHANG Zhen-zhen, JI Guang-rong. Application on the rail detection using laser-induced breakdown spectroscopy and laser ultrasonic technology[J]. Periodical of Ocean University of China, 2019, 49(8): 142-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201908018.htm
    [29] 南钢洋, 王启武, 张振振, 等. 基于激光超声方法的钢轨缺陷检测[J]. 红外与激光工程, 2017, 46(1): 140-145. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201701021.htm

    NAN Gang-yang, WANG Qi-wu, ZHANG Zhen-zhen, et al. Rail steel flaw inspection based on laser ultrasonic method[J]. Infrared and Laser Engineering, 2017, 46(1): 140-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201701021.htm
    [30] LIU Ze, LI Wen, XUE Fang-qi, et al. Electromagnetic tomography rail defect inspection[J]. IEEE Transactions on Magnetics, 2015, 51(10): 1-7.
    [31] 夏银, 林建辉, 王锋, 等. 基于2D激光位移传感器的轨底坡动态检测系统研究[J]. 铁道标准设计, 2019, 63(4): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201904012.htm

    XIA Yin, LIN Jian-hui, WANG Feng, et al. Study on dynamic detection system of rail cant based on 2D laser displacement sensor[J]. Railway Standard Design, 2019, 63(4): 63-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201904012.htm
    [32] 孙明健, 程星振, 王艳, 等. 基于光声信号的高铁钢轨表面缺陷检测方法[J]. 物理学报, 2016, 65(3): 351-360. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201603042.htm

    SUN Ming-jian, CHENG Xing-zhen, WANG Yan, et al. Method for detecting high-speed rail surface defects by photoacoustic signal[J]. Acta Physica Sinica, 2016, 65(3): 351-360. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201603042.htm
    [33] 张辉, 宋雅男, 王耀南, 等. 钢轨缺陷无损检测与评估技术综述[J]. 仪器仪表学报, 2019, 40(2): 11-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201902002.htm

    ZHANG Hui, SONG Ya-nan, WANG Yao-nan, et al. Review of rail defect non-destructive testing and evaluation[J]. Chinese Journal of Scientific Instrument, 2019, 40(2): 11-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201902002.htm
    [34] 戴鹏, 王胜春, 杜馨瑜, 等. 基于半监督深度学习的无砟轨道扣件缺陷图像识别方法[J]. 中国铁道科学, 2018, 39(4): 43-49. doi: 10.3969/j.issn.1001-4632.2018.04.07

    DAI Peng, WANG Sheng-chun, DU Xin-yu, et al. Image recognition method for the fastener defect of ballastless track based on semi-supervised deep learning[J]. China Railway Science, 2018, 39(4): 43-49. (in Chinese) doi: 10.3969/j.issn.1001-4632.2018.04.07
    [35] 姚宗伟, 杨宏飞, 胡际勇, 等. 基于机器视觉和卷积神经网络的轨道表面缺陷检测方法[J]. 铁道学报, 2021, 43(4): 101-107. doi: 10.3969/j.issn.1001-8360.2021.04.013

    YAO Zong-wei, YANG Hong-fei, HU Ji-yong, et al. Track surface defect detection method based on machine vision and convolutional neural network[J]. Journal of the China Railway Society, 2021, 43(4): 101-107. (in Chinese) doi: 10.3969/j.issn.1001-8360.2021.04.013
    [36] 孙次锁, 刘军, 秦勇, 等. 基于深度学习的钢轨伤损智能识别方法[J]. 中国铁道科学, 2018, 39(5): 51-57. doi: 10.3969/j.issn.1001-4632.2018.05.07

    SUN Ci-suo, LIU Jun, QIN Yong, et al. Intelligent detection method for rail flaw based on deep learnin[J]. China Railway Science, 2018, 39(5): 51-57. (in Chinese) doi: 10.3969/j.issn.1001-4632.2018.05.07
    [37] 闵永智, 岳彪, 马宏锋, 等. 基于图像灰度梯度特征的钢轨表面缺陷检测[J]. 仪器仪表学报, 2018, 39(4): 220-229. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201804026.htm

    MIN Yong-zhi, YUE Biao, MA Hong-feng, et al. Rail surface defects detection based on gray scale gradient characteristics of image[J]. Chinese Journal of Scientific Instrument, 2018, 39(4): 220-229. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201804026.htm
    [38] GAN Jin-rui, LI Qing-yong, WANG Jian-zhu, et al. A hierarchical extractor-based visual rail surface inspection system[J]. IEEE Sensors Journal, 2017, 17(23): 7935-7944. doi: 10.1109/JSEN.2017.2761858
    [39] 胡松涛, 石文泽, 卢超, 等. 高速铁路道岔尖轨轨底伤损SH导波原位检测方法研究[J]. 机械工程学报, 2021, 57(18): 2-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202118002.htm

    HU Song-tao, SHI Wen-ze, LU Chao, et al. Research on in-situ detection of damage in the high-speed railway turnout bottom based on shear horizontal guided wave[J]. Journal of Mechanical Engineering, 2021, 57(18): 2-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202118002.htm
    [40] 许庆阳, 刘中田, 赵会兵. 基于隐马尔科夫模型的道岔故障诊断方法[J]. 铁道学报, 2018, 40(8): 98-106. doi: 10.3969/j.issn.1001-8360.2018.08.013

    XU Qing-yang, LIU Zhong-tian, ZHAO Hui-bing. Method of turnout fault diagnosis based on hidden Markov model[J]. Journal of The China Railway Society, 2018, 40(8): 98-106. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.08.013
    [41] 田世润, 齐金平, 王保福, 等. 基于贝叶斯网络的复式交分道岔故障诊断[J]. 北京交通大学学报, 2020, 44(6): 118-125. doi: 10.11860/j.issn.1673-0291.20200101

    TIAN Shi-run, QI Jin-ping, WANG Bao-fu, et al. Fault diagnosis of double slip switches based on Bayesian network[J]. Journal of Beijing Jiaotong University, 2020, 44(6): 118-125. (in Chinese) doi: 10.11860/j.issn.1673-0291.20200101
    [42] 陈虹屹, 王小敏, 郭进, 等. 基于EEMD奇异熵的高速道岔裂纹伤损检测[J]. 振动. 测试与诊断, 2016, 36(5): 845-851, 1019. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201605006.htm

    CHEN Hong-yi, WANG Xiao-min, GUO Jin, et al. High-speed turnout flaw detection based on EEMD singular entropy[J]. Journal of Vibration, Measurement and Diagnosis, 2016, 36(5): 845-851, 1019. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201605006.htm
    [43] 赵洁. 基于多传感器信息融合的轨道缺陷在线检测方法的研究[D]. 成都: 西南交通大学, 2015.

    ZHAO Jie. Online rail defect detection method based on multi-sensor information fusion[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese)
    [44] 战友, 阳恩慧, 马啸天, 等. 无砟轨道板裂缝三维激光检测系统研发与算法验证[J]. 铁道学报, 2021, 43(7): 114-120. doi: 10.3969/j.issn.1001-8360.2021.07.015

    ZHAN You, YANG En-hui, MA Xiao-tian, et al. Development and algorithm verification of 3D laser detection system for non-ballasted track slab cracks[J]. Journal of the China Railway Society, 2021, 43(7): 114-120. (in Chinese) doi: 10.3969/j.issn.1001-8360.2021.07.015
    [45] 肖子葳, 朱国甫, 张杰. CRTS Ⅱ型板式轨道CA砂浆层应力波法损伤识别[J]. 武汉理工大学学报, 2021, 43(6): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY202106006.htm

    XIAO Zi-wei, ZHU Guo-fu, ZHANG Jie, et al. Identification of CA mortar defects in CRTS Ⅱ ballastless tracks of high-speed railway using stress wave method[J]. Journal of Wuhan University of Technology, 2021, 43(6): 34-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY202106006.htm
    [46] 廖红建, 朱庆女, 昝月稳, 等. 基于探地雷达的高铁无砟轨道结构层病害检测[J]. 西南交通大学学报, 2016, 51(1): 8-13. doi: 10.3969/j.issn.0258-2724.2016.01.002

    LIAO Hong-jian, ZHU Qing-nü, ZAN Yue-wen, et al. Detection of ballastless track diseases in high-speed railway based on ground penetrating radar[J]. Journal of Southwest Jiaotong University, 2016, 51(1): 8-13. (in Chinese) doi: 10.3969/j.issn.0258-2724.2016.01.002
    [47] 舒志乐, 朱思宇, 张华杰. 无砟轨道CA砂浆层病害探地雷达检测及三维正演模拟[J]. 铁道科学与工程学报, 2021, 18(7): 1679-1685. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202107002.htm

    SHU Zhi-le, ZHU Si-yu, ZHANG Hua-jie. Ground penetrating radar detection and three-dimensional forward modeling of CA mortar layer disease on ballastless track[J]. Journal of Railway Science and Engineering, 2021, 18(7): 1679-1685. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202107002.htm
    [48] 钟鹏飞, 车爱兰, 冯少孔, 等. 高速铁路线下结构典型病害分析及快速无损检测方法研究[J]. 振动与冲击, 2017, 36(11): 154-160. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201711024.htm

    ZHONG Peng-fei, CHE Ai-lan, FENG Shao-kong, et al. Typical defects' analysis and nondestructive detection method for undertrack structures of high speed railways[J]. Journal of Vibration and Shock, 2017, 36(11): 154-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201711024.htm
    [49] ZHOU Lu, ZHANG Chao, NI Yi-qing, et al. Real-time condition assessment of railway tunnel deformation using an FBG-based monitoring system[J]. Smart Structures and Systems, 2018, 21(5): 537-548.
    [50] 周陆, 孙祥涛, 倪一清. 高速列车轮轨检测和监测方法综述[J]. 电力机车与城轨车辆, 2021, 44(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI202101001.htm

    ZHOU Lu, SUN Xiang-tao, NI Yi-qing. Review of inspection and monitoring methods of high speed train wheels and rails[J]. Electric Locomotives and Mass Transit Vehicles, 2021, 44(1): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI202101001.htm
    [51] 朱力强, 许西宁, 余祖俊, 等. 基于超声导波的钢轨完整性检测方法研究[J]. 仪器仪表学报, 2016, 37(7): 1603-1609. doi: 10.3969/j.issn.0254-3087.2016.07.021

    ZHU Li-qiang, XU Xi-ning, YU Zu-jun, et al. Study on the railway integrity monitoring method based on ultrasonic guided waves[J]. Chinese Journal of Scientific Instrument, 2016, 37(7): 1603-1609. (in Chinese) doi: 10.3969/j.issn.0254-3087.2016.07.021
    [52] 蔡小培, 田春香, 王铁霖, 等. 长联大跨桥梁无缝线路力学特性与结构设计[J]. 高速铁路技术, 2020, 11(2): 73-79, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL202002013.htm

    CAI Xiao-pei, TIAN Chun-xiang, WANG Tie-lin, et al. Mechanical characteristics and structural design of continuous welded rail on long-unit bridge with long span[J]. High Speed Railway Technology, 2020, 11(2): 73-79, 86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL202002013.htm
    [53] WEI Jia-hong, LIU Chong, REN Tong-qun, et al. Online condition monitoring of a rail fastening system on high-speed railways based on wavelet packet analysis[J]. Sensors, 2017, 17(2): 318. doi: 10.3390/s17020318
    [54] WANG Jun-fang, LIU Xiao-zhou, NI Yi-qing. A Bayesian probabilistic approach for acoustic emission-based rail condition assessment[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(1): 21-34. doi: 10.1111/mice.12316
    [55] 王金虎. 基于双谱的重载铁路道岔钢轨折断及伤损监测系统[J]. 铁道建筑, 2017, 57(6): 130-134, 139. doi: 10.3969/j.issn.1003-1995.2017.06.31

    WANG Jin-hu. Monitoring system for rail fracture and damage of heavy haul railway turnout based on bispectrum[J]. Railway Engineering, 2017, 57(6): 130-134, 139. (in Chinese) doi: 10.3969/j.issn.1003-1995.2017.06.31
    [56] 苗壮, 何越磊, 路宏遥, 等. 基于机器视觉的无砟轨道层间结构位移测量方法研究[J]. 铁道标准设计, 2020, 64(4): 77-83. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202004015.htm

    MIAO Zhuang, HE Yue-lei, LU Hong-yao, et al. Research on measurement method of interlayer structure displacement in ballastless track based on machine vision[J]. Railway Standard Design, 2020, 64(4): 77-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202004015.htm
    [57] 杨飞, 王秀丽, 尤明熙, 等. 基于不平顺的CRTS Ⅱ型轨道板状态评价方法研究[J]. 铁道工程学报, 2020, 37(7): 29-34. doi: 10.3969/j.issn.1006-2106.2020.07.006

    YANG Fei, WANG Xiu-li, YOU Ming-xi, et al. Research on the state evaluation method of CRTS Ⅱ track slab based on track irregularity[J]. Journal of Railway Engineering Society, 2020, 37(7): 29-34. (in Chinese) doi: 10.3969/j.issn.1006-2106.2020.07.006
    [58] 傅勤毅, 刘芝平, 李焜武. 基于GPS定位原理的轨道外部几何参数测量系统[J]. 科技导报, 2014, 32(31): 41-45. doi: 10.3981/j.issn.1000-7857.2014.31.004

    FU Qin-yi, LIU Zhi-ping, LI Kun-wu. An external railway geometric parameter measurement system based on GPS[J]. Science and Technology Review, 2014, 32(31): 41-45. (in Chinese) doi: 10.3981/j.issn.1000-7857.2014.31.004
    [59] 黎奇, 白征东, 陈波波, 等. GNSS/INS多传感器组合高速铁路轨道测量系统[J]. 测绘学报, 2020, 49(5): 569-579. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202005004.htm

    LI Qi, BAI Zheng-dong, CHEN Bo-bo, et al. A novel track measurement system based on GNSS/INS and multisensor for high-speed railway[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5): 569-579. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202005004.htm
    [60] 黎国清, 刘秀波, 杨飞, 等. 高速铁路简支梁徐变上拱引起的高低不平顺变化规律及其对行车动力性能的影响[J]. 中国科学: 技术科学, 2014, 44(7): 786-792. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407017.htm

    LI Guo-qing, LIU Xiu-bo, YANG Fei, et al. Variation law and impact on dynamic performance of profile irregularity caused by creep of simply-supported beam on high-speed railway[J]. Scientia Sinica (Technologica), 2014, 44(7): 786-792. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407017.htm
    [61] 陈兆玮. 高速铁路桥墩沉降对行车性能影响的研究[D]. 成都: 西南交通大学, 2017.

    CHEN Zhao-wei. Influence of pier settlement on dynamic performance of running trains in high-speed railways[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
    [62] 陈兆玮, 孙宇, 翟婉明. 高速铁路桥墩沉降与钢轨变形的映射关系(Ⅰ): 单元板式无砟轨道系统[J]. 中国科学: 技术科学, 2014, 44(7): 770-777. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407015.htm

    CHEN Zhao-wei, SUN Yu, ZHAI Wan-ming. Mapping relationship between pier settlement and rail deformation of high-speed railways—Part (Ⅰ): the unit slab track system[J]. Scientia Sinica (Technologica), 2014, 44(7): 770-777. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407015.htm
    [63] 陈兆玮, 孙宇, 翟婉明. 高速铁路桥墩沉降与钢轨变形的映射关系(Ⅱ): 纵连板式无砟轨道系统[J]. 中国科学: 技术科学, 2014, 44(7): 778-785. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407016.htm

    CHEN Zhao-wei, SUN Yu, ZHAI Wan-ming. Mapping relationship between pier settlement and rail deformation of high-speed railways—Part (Ⅱ): the longitudinal connected ballastless track system[J]. Scientia Sinica (Technologica), 2014, 44(7): 778-785. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407016.htm
    [64] 勾红叶, 冉智文, 蒲黔辉, 等. 高速铁路桥梁竖向变形与轨面几何形态的通用映射解析模型研究[J]. 工程力学, 2019, 36(6): 227-238. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201906025.htm

    GOU Hong-ye, RAN Zhi-wen, PU Qian-hui, et al. Study on mapping relationship between bridge vertical deformation and track geometry of high-speed railway[J]. Engineering Mechanics, 2019, 36(6): 227-238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201906025.htm
    [65] 勾红叶, 冉智文, 蒲黔辉, 等. 桥梁竖向变形对轨道平顺性的影响研究[J]. 铁道工程学报, 2018, 35(11): 42-47. doi: 10.3969/j.issn.1006-2106.2018.11.008

    GOU Hong-ye, RAN Zhi-wen, PU Qian-hui, et al. Research on the influence of vertical deformation of bridge on the track regularity[J]. Journal of Railway Engineering Society, 2018, 35(11): 42-47. (in Chinese) doi: 10.3969/j.issn.1006-2106.2018.11.008
    [66] GOU Hong-ye, YANG Long-chen, LENG Dan, et al. Effect of bridge lateral deformation on track geometry of high-speed railway[J]. Steel and Composite Structures, 2018, 29(2): 219-229.
    [67] GOU Hong-ye, XIE Rui, LIU Chang, et al. Analytical study on high-speed railway track deformation under long-term bridge deformations and interlayer degradation[J]. Structures, 2021, 29: 1005-1015. doi: 10.1016/j.istruc.2020.10.079
    [68] GOU Hong-ye, LIU Chang, XIE Rui, et al. Running safety of high-speed train on deformed railway bridges with interlayer connection failure[J]. Steel and Composite Structures, 2021, 39(3): 261-274.
    [69] JIANG Li-zhong, ZHENG Lan, FENG Yu-lin, et al. Mapping the relationship between the structural deformation of a simply supported beam bridge and rail deformation in high-speed railways[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(10): 1081-1092. doi: 10.1177/0954409719880668
    [70] FENG Yu-lin, JIANG Li-zhong, ZHOU Wang-bao, et al. An analytical solution to the mapping relationship between bridge structures vertical deformation and rail deformation of high-speed railway[J]. Steel and Composite Structures, 2019, 33(2): 209-224.
    [71] 蒋丽忠, 冯玉林, 周旺保, 等. 高铁连续梁桥横向变形与轨面几何形态变化的映射关系研究[J]. 建筑结构学报, 2021, 42(4): 215-222. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202104024.htm

    JIANG Li-zhong, FENG Yu-lin, ZHOU Wang-bao, et al. Mapping relationship between continuous girder bridge transverse deformation and rail geometric changes of high-speed railway[J]. Journal of Building Structures, 2021, 42(4): 215-222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202104024.htm
    [72] 何春燕, 陈兆玮, 翟婉明. 高速铁路路桥过渡段不均匀沉降与钢轨变形的映射关系及动力学应用[J]. 中国科学: 技术科学, 2018, 48(8): 881-890. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201808008.htm

    HE Chun-yan, CHEN Zhao-wei, ZHAI Wan-ming. Mapping relationship between uneven settlement of subgrade and rail deformation in subgrade-bridge transition section and its dynamic application[J]. Scientia Sinica (Technologica), 2018, 48(8): 881-890. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201808008.htm
    [73] 吴斌, 林志华, 曾志平, 等. 日温下高铁桥墩位移与钢轨变形的映射关系[J]. 铁道工程学报, 2017, 34(11): 51-56, 75. doi: 10.3969/j.issn.1006-2106.2017.11.011

    WU Bin, LIN Zhi-hua, ZENG Zhi-ping, et al. Mapping relationship between the bridge pier's displacement and rail deformation of high-speed railways under the influence of sunshine temperature[J]. Journal of Railway Engineering Society, 2017, 34(11): 51-56, 75. (in Chinese) doi: 10.3969/j.issn.1006-2106.2017.11.011
    [74] YAU J D. Response of a train moving on multi-span railway bridges undergoing ground settlement[J]. Engineering Structures, 2009, 31(9): 2115-2122. doi: 10.1016/j.engstruct.2009.03.019
    [75] YANG Song, XIAO Hong, HUANG Lu-wei. Effects on mechanical properties of track structure and running safety caused by uneven settlement of bridge piers[J]. Sensors and Transducers, 2014, 183(12): 265-272.
    [76] XIONG Zhen-wei, LIANG Xin-ling, DAI Xian-xing, et al. Numerical analysis of bridge expansion-induced rail deformation of ballast truck[J]. Applied Mechanics and Materials, 2014, 580-583: 3208-3214. doi: 10.4028/www.scientific.net/AMM.580-583.3208
    [77] 王平, 徐井芒, 方嘉晟, 等. 高速铁路轨道结构理论研究进展[J]. 高速铁路技术, 2020, 11(2): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL202002005.htm

    WANG Ping, XU Jing-mang, FANG Jia-sheng, et al. Research progress on track structure theory of high-speed railway[J]. High Speed Railway Technology, 2020, 11(2): 18-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL202002005.htm
    [78] 刘文硕, 戴公连, 秦红禧. 滑移支座摩阻效应对高速铁路大跨度桥梁梁轨相互作用的影响[J]. 中南大学学报(自然科学版), 2019, 50(3): 627-633. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201903016.htm

    LIU Wen-shuo, DAI Gong-lian, QIN Hong-xi. Influence of friction effect of sliding bearing on track-bridge interaction between continuous welded rail and long-span bridge in high-speed railway[J]. Journal of Central South University (Science and Technology), 2019, 50(3): 627-633. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201903016.htm
    [79] WANG Hao-yu, MARKINE V. Dynamic behaviour of the track in transitions zones considering the differential settlement[J]. Journal of Sound and Vibration, 2019, 459: 114863. doi: 10.1016/j.jsv.2019.114863
    [80] 戴公连, 刘瑶, 刘文硕. 大跨度连续梁桥与梁拱组合桥梁轨相互作用比较[J]. 中南大学学报(自然科学版), 2017, 48(1): 233-238. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201701031.htm

    DAI Gong-lian, LIU Yao, LIU Wen-shuo. Comparison of track-bridge interaction between long-span continuous girder bridge and continuous arch bridge[J]. Journal of Central South University (Science and Technology), 2017, 48(1): 233-238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201701031.htm
    [81] JIANG Li-zhong, ZHANG Yun-tai, FENG Yu-lin, et al. Simplified calculation modeling method of multi-span bridges on high-speed railways under earthquake condition[J]. Bulletin of Earthquake Engineering, 2020, 18(5): 2303-2328. doi: 10.1007/s10518-019-00779-x
    [82] 冯玉林, 蒋丽忠, 周旺保, 等. 桥上CRTS Ⅱ型板式无砟轨道层间关键构件的地震响应规律及参数影响分析[J]. 铁道标准设计, 2020, 64(10): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202010007.htm

    FENG Yu-lin, JIANG Li-zhong, ZHOU Wang-bao, et al. Seismic response laws and parameter impact of CRTS Ⅱ slab ballastless track key components between layers on bridge[J]. Railway Standard Design, 2020, 64(10): 30-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202010007.htm
    [83] 伊廷华, 王浩, 丁幼亮, 等. 大跨桥梁持续环境荷载的时变效应与服役性能评估[J]. 中国基础科学, 2019, 21(6): 44-48. doi: 10.3969/j.issn.1009-2412.2019.06.06

    YI Ting-hua, WANG Hao, DING You-liang, et al. Time-varying effects and service performance evaluation for long-span bridges under the effects of continuous environmental loads[J]. China Basic Science, 2019, 21(6): 44-48. (in Chinese) doi: 10.3969/j.issn.1009-2412.2019.06.06
    [84] 周凌宇, 彭秀生, 杨林旗, 等. 列车荷载下简支梁桥上CRTS Ⅱ型板式无砟轨道经时力学性能研究[J]. 铁道学报, 2021, 43(3): 120-129. doi: 10.3969/j.issn.1001-8360.2021.03.015

    ZHOU Ling-yu, PENG Xiu-sheng, YANG Lin-qi, et al. Time-dependent mechanical properties of CRTS Ⅱ slab track on simply supported beam bridge under train load[J]. Journal of the China Railway Society, 2021, 43(3): 120-129. (in Chinese) doi: 10.3969/j.issn.1001-8360.2021.03.015
    [85] 李龙祥, 周凌宇, 黄戡, 等. 循环荷载下无砟轨道-桥梁结构体系刚度退化性能[J]. 中南大学学报(自然科学版), 2019, 50(10): 2481-2490. doi: 10.11817/j.issn.1672-7207.2019.10.016

    LI Long-xiang, ZHOU Ling-yu, HUANG Kan, et al. Performance of stiffness degradation of structure system in ballastless track-bridge under cyclic load[J]. Journal of Central South University (Science and Technology), 2019, 50(10): 2481-2490. (in Chinese) doi: 10.11817/j.issn.1672-7207.2019.10.016
    [86] 张迅, 温志鹏, 刘蕊, 等. 泥石流冲击作用下无砟轨道桥梁的动力响应[J]. 铁道工程学报, 2018, 35(1): 70-77. doi: 10.3969/j.issn.1006-2106.2018.01.012

    ZHANG Xun, WEN Zhi-peng, LIU Rui, et al. Dynamic responses of a ballastless track bridge under debris flow impacts[J]. Journal of Railway Engineering Society, 2018, 35(1): 70-77. (in Chinese) doi: 10.3969/j.issn.1006-2106.2018.01.012
    [87] 刘占辉, 呼瑞杰, 姚昌荣, 等. 桥梁撞击问题2019年度研究进展[J]. 土木与环境工程学报, 2020, 42(5): 235-246. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202005022.htm

    LIU Zhan-hui, HU Rui-jie, YAO Chang-rong, et al. State-of-the-art review of bridge impact research in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42(5): 235-246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202005022.htm
    [88] 陈树礼, 刘永前. 洪水冲刷对重载铁路桥梁动力性能影响及加固技术[J]. 振动与冲击, 2018, 37(22): 187-193. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201822028.htm

    CHEN Shu-li, LIU Yong-qian. Influence research of flood scouring on heavy-haul railway bridge dynamic performances and the corresponding reinforcement technology[J]. Journal of Vibration and Shock, 2018, 37(22): 187-193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201822028.htm
    [89] 赵国堂, 刘钰. CRTS Ⅱ型板式无砟轨道结构层间离缝机理研究[J]. 铁道学报, 2020, 42(7): 117-126. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202007017.htm

    ZHAO Guo-tang, LIU Yu. Mechanism analysis of delamination of CRTS Ⅱ slab ballastless track structure[J]. Journal of the China Railway Society, 2020, 42(7): 117-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202007017.htm
    [90] 蔡小培, 钟阳龙, 阮庆伍, 等. 混凝土塑性损伤模型在无砟轨道非线性分析中的应用[J]. 铁道学报, 2019, 41(5): 109-118. doi: 10.3969/j.issn.1001-8360.2019.05.013

    CAI Xiao-pei, ZHONG Yang-long, RUAN Qing-wu, et al. Application of concrete damaged plasticity model to nonlinear analysis of ballastless track[J]. Journal of the China Railway Society, 2019, 41(5): 109-118. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.05.013
    [91] 周凌宇, 张广潮, 余志武, 等. 循环温度荷载下无砟轨道结构模型试验研究[J]. 铁道学报, 2020, 42(1): 82-88. doi: 10.3969/j.issn.1001-8360.2020.01.012

    ZHOU Ling-yu, ZHANG Guang-chao, YU Zhi-wu, et al. Model experiments of ballastless track-bridge structure under cyclic temperature load[J]. Journal of the China Railway Society, 2020, 42(1): 82-88. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.01.012
    [92] 戴公连, 粟淼. 预制板式无砟轨道界面脱层失效的数值模拟[J]. 华南理工大学学报(自然科学版), 2016, 44(7): 102-107, 122. doi: 10.3969/j.issn.1000-565X.2016.07.016

    DAI Gong-lian, SU Miao. Numerical stimulation of interface delamination failure for prefabricated slab ballastless track[J]. Journal of South China University of Technology(Natural Science Edition), 2016, 44(7): 102-107, 122. (in Chinese) doi: 10.3969/j.issn.1000-565X.2016.07.016
    [93] CAI Xiao-pei, LUO Bi-cheng, ZHONG Yang-long, et al. Arching mechanism of the slab joints in CRTS Ⅱ slab track under high temperature conditions[J]. Engineering Failure Analysis, 2019, 98: 95-108. doi: 10.1016/j.engfailanal.2019.01.076
    [94] ZHU Sheng-yang, FU Qiang, CAI Cheng-biao, et al. Damage evolution and dynamic response of cement asphalt mortar layer of slab track under vehicle dynamic load[J]. SCIENCE CHINA Technological Sciences, 2014, 57(10): 1883-1894. doi: 10.1007/s11431-014-5636-8
    [95] 王明昃, 蔡成标, 朱胜阳, 等. 基于黏聚力模型的双块式无砟轨道混凝土层间黏结性能试验与分析[J]. 铁道学报, 2016, 38(11): 88-94. doi: 10.3969/j.issn.1001-8360.2016.11.013

    WANG Ming-ze, CAI Cheng-biao, ZHU Sheng-yang, et al. Experimental investigation on adhesive performance of concrete interface of double-block ballastless track based on cohesive zone model[J]. Journal of the China Railway Society, 2016, 38(11): 88-94. (in Chinese) doi: 10.3969/j.issn.1001-8360.2016.11.013
    [96] 赵春发, 刘建超, 毛海和, 等. 温度梯度荷载作用下CRTS Ⅱ型板式无砟轨道砂浆层界面损伤分析[J]. 中国科学: 技术科学, 2018, 48(1): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201801009.htm

    ZHAO Chun-fa, LIU Jian-chao, MAO Hai-he, et al. Interface damage analysis of CA mortar layer of the CRTSⅡ ballastless slab track under temperature gradient loads[J]. Scientia Sinica (Technologica), 2018, 48(1): 79-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201801009.htm
    [97] 刘学毅, 苏成光, 刘丹, 等. 轨道板与砂浆粘结试验及内聚力模型参数研究[J]. 铁道工程学报, 2017, 34(3): 22-28. doi: 10.3969/j.issn.1006-2106.2017.03.005

    LIU Xue-yi, SU Cheng-guang, LIU Dan, et al. Research on the bond properties between slab and CA mortar and the parameters study of cohesive model[J]. Journal of Railway Engineering Society, 2017, 34(3): 22-28. (in Chinese) doi: 10.3969/j.issn.1006-2106.2017.03.005
    [98] 钟阳龙, 高亮, 王璞, 等. 温度荷载下CRTS Ⅱ型轨道板与CA砂浆界面剪切破坏机理[J]. 工程力学, 2018, 35(2): 230-238. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201802028.htm

    ZHONG Yang-long, GAO Liang, WANG Pu, et al. Mechanism of interfacial shear failure between CRTS Ⅱ slab and ca mortar under temperature loading[J]. Engineering Mechanics, 2018, 35(2): 230-238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201802028.htm
    [99] 蒋忠辉, 赵国堂, 张合吉, 等. 车辆轨道关键参数对高速铁路钢轨波磨发展的影响[J]. 机械工程学报, 2018, 54(4): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804010.htm

    JIANG Zhong-hui, ZHAO Guo-tang, ZHANG He-ji, et al. Effects of vehicle and track key parameters on the rail corrugation of high-speed railways[J]. Journal of Mechanical Engineering, 2018, 54(4): 57-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804010.htm
    [100] 赵晓男, 陈光雄, 康熙, 等. 兰新客运专线动车组车轮多边形磨耗的机理[J]. 西南交通大学学报, 2020, 55(2): 364-371. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202002017.htm

    ZHAO Xiao-nan, CHEN Guang-xiong, KANG Xi, et al. Mechanism of polygonal wear on wheels of electric multiple units on Lanzhou-Xinjiang Passenger Dedicated Line[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 364-371. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202002017.htm
    [101] CUI Xiao-li, CHENG Zhi, YANG Zong-chao, et al. Study on the phenomenon of rail corrugation on high-speed rail based on the friction-induced vibration and feedback vibration[J]. Vehicle System Dynamics, 2020, 60(2): 413-432.
    [102] 崔晓璐, 黄博, 陈光雄. 抑制轮轨摩擦自激振动的扣件结构多参数拟合研究[J]. 西南交通大学学报, 2021, 56(1): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202101009.htm

    CUI Xiao-lu, HUANG Bo, CHEN Guang-xiong. Research on multi-parameter fitting of fastener structures to suppress wheel-rail friction self-excited vibration[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202101009.htm
    [103] SUN Yu, GUO Yu, LYU Kai-kai, et al. Effect of hollow- worn wheels on the evolution of rail wear[J]. Wear, 2019, 436-437: 203032. doi: 10.1016/j.wear.2019.203032
    [104] 丁宇. 高速铁路无砟轨道疲劳损伤及疲劳可靠性研究[D]. 北京: 北京交通大学, 2020.

    DING Yu. Research on fatigue damage and fatigue reliability of high-speed railway ballastless track[D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese)
    [105] GOU Hong-ye, LIU Chang, ZHOU Wen, et al. Dynamic responses of a high-speed train passing a deformed bridge using a vehicle-track-bridge coupled model[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235(4): 463-477. doi: 10.1177/0954409720944337
    [106] 勾红叶, 杨彪, 刘雨, 等. 复杂条件下车-轨-桥变形映射关系及行车安全评价[J]. 中国公路学报, 2021, 34(4): 162-173. doi: 10.3969/j.issn.1001-7372.2021.04.014

    GOU Hong-ye, YANG Biao, LIU Yu, et al. Deformation mapping relationship and running safety evaluation of train-track-bridge system for high-speed railway in complex conditions[J]. China Journal of Highway and Transport, 2021, 34(4): 162-173. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.04.014
    [107] 王昆鹏, 夏禾, 郭薇薇, 等. 桥墩不均匀沉降对高速列车运行安全影响研究[J]. 振动与冲击, 2014, 33(6): 137-142, 155. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201406025.htm

    WANG Kun-peng, XIA He, GUO Wei-wei, et al. Influence of uneven settlement of bridge piers on running safety of high-speed trains[J]. Journal of Vibration and Shock, 2014, 33(6): 137-142, 155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201406025.htm
    [108] 陈兆玮. 桥墩沉降下纵连板式轨道与桥面间动态接触行为及其对列车动态特性的影响[J]. 土木工程学报, 2021, 54(1): 97-105. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202101009.htm

    CHEN Zhao-wei. Dynamic contact behavior between longitudinally-connected-track and bridge deck subject to pier settlement and its influence on running train[J]. China Civil Engineering Journal, 2021, 54(1): 97-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202101009.htm
    [109] 吴楠, 肖军华, 陈建国, 等. 高速铁路无砟轨道桥梁基础变形对行车的影响[J]. 铁道工程学报, 2017, 34(9): 58-63, 69. doi: 10.3969/j.issn.1006-2106.2017.09.011

    WU Nan, XIAO Jun-hua, CHEN Jian-guo, et al. Effect of bridge pier deformation for high speed railway with ballastless track on train running safety and comfort[J]. Journal of Railway Engineering Society, 2017, 34(9): 58-63, 69. (in Chinese) doi: 10.3969/j.issn.1006-2106.2017.09.011
    [110] CAO Yan-mei, XIA He, LU Wen-liang, et al. A numerical method to predict the riding comfort induced by foundation construction close to a high-speed-line bridge[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2015, 229(5): 553-564. doi: 10.1177/0954409713519087
    [111] JIN Zhi-bing, YUAN Li-gang, PEI Shi-ling. Efficient evaluation of bridge deformation for running safety of railway vehicles using simplified models[J]. Advances in Structural Engineering, 2020, 23(3): 454-467. doi: 10.1177/1369433219875304
    [112] 李小珍, 肖军, 刘德军, 等. 附加变形对沪通长江大桥行车性能影响[J]. 铁道工程学报, 2016, 33(11): 63-68, 80. doi: 10.3969/j.issn.1006-2106.2016.11.012

    LI Xiao-zhen, XIAO Jun, LIU De-jun, et al. Performance influence of train driving on Shanghai-Nantong Yangtze River Bridge considering additional deformation[J]. Journal of Railway Engineering Society, 2016, 33(11): 63-68, 80. (in Chinese) doi: 10.3969/j.issn.1006-2106.2016.11.012
    [113] 朱志辉, 刘杰, 周智辉, 等. 考虑温度变形的大跨度拱桥行车动力响应分析[J]. 铁道工程学报, 2019, 36(3): 26-31, 44. doi: 10.3969/j.issn.1006-2106.2019.03.005

    ZHU Zhi-hui, LIU Jie, ZHOU Zhi-hui, et al. Driving dynamic response analysis of long-span arch bridge considering temperature deformation[J]. Journal of Railway Engineering Society, 2019, 36(3): 26-31, 44. (in Chinese) doi: 10.3969/j.issn.1006-2106.2019.03.005
    [114] 勾红叶, 杨睿. 温度梯度作用下高速铁路桥上行车安全性研究[J]. 铁道工程学报, 2020, 37(3): 47-52. doi: 10.3969/j.issn.1006-2106.2020.03.008

    GOU Hong-ye, YANG Rui. Research on the running safety of high-speed railway on bridges under the action of temperature gradients[J]. Journal of Railway Engineering Society, 2020, 37(3): 47-52. (in Chinese) doi: 10.3969/j.issn.1006-2106.2020.03.008
    [115] 周爽, 张楠, 夏禾, 等. 高速铁路简支箱梁桥准静态变形对车桥动力响应的影响研究[J]. 振动与冲击, 2019, 38(5): 209-215, 258. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201905031.htm

    ZHOU Shuang, ZHANG Nan, XIA He, et al. Effects of quasi-static deformation of a simply supported high speed railway box girder bridge on dynamic responses of vehicle-bridge coupled system[J]. Journal of Vibration and Shock, 2019, 38(5): 209-215, 258. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201905031.htm
    [116] LI Wen-qiu, ZHU Yan, LI Xiao-zhen. Dynamic response of bridges to moving trains: a study on effects of concrete creep and temperature deformation[J]. Applied Mechanics and Materials, 2012, 193-194: 1179-1182.
    [117] GOU Hong-ye, LIU Chang, HUA Hui, et al. Mapping relationship between dynamic responses of high-speed trains and additional bridge deformations[J]. Journal of Vibration and Control, 2021, 27(9/10): 1051-1062.
    [118] CHEN Zhao-wei, ZHAI Wan-ming, TIAN Guo-ying. Study on the safe value of multi-pier settlement for simply supported girder bridges in high-speed railways[J]. Structure and Infrastructure Engineering, 2018, 14(3): 400-410. doi: 10.1080/15732479.2017.1359189
    [119] CHEN Zhao-wei, ZHAI Wan-ming, CAI Cheng-biao, et al. Safety threshold of high-speed railway pier settlement based on train-track-bridge dynamic interaction[J]. Science China Technological Sciences, 2015, 58(2): 202-210. doi: 10.1007/s11431-014-5692-0
    [120] 陈兆玮, 翟婉明. 连续多桥墩沉降与高速列车动态特性间的定量关系研究[J]. 机械工程学报, 2021, 57(10): 65-76. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202110007.htm

    CHEN Zhao-wei, ZHAI Wan-ming. Relationship between multi-pier settlement and dynamic performance of high-speed train[J]. Journal of Mechanical Engineering, 2021, 57(10): 65-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202110007.htm
    [121] CHEN Zhao-wei, ZHAI Wan-ming. Theoretical method of determining pier settlement limit value for China's high-speed railway bridges considering complete factors[J]. Engineering Structures, 2020, 209: 109998. doi: 10.1016/j.engstruct.2019.109998
    [122] 李奇, 吴阅, 吴琪. 考虑轨道静态变位的简支梁竖向刚度限值研究[J]. 铁道工程学报, 2020, 37(3): 34-39. doi: 10.3969/j.issn.1006-2106.2020.03.006

    LI Qi, WU Yue, WU Qi. Research on the threshold of vertical stiffness of simply supported girders considering static deformation of track[J]. Journal of Railway Engineering Society, 2020, 37(3): 34-39. (in Chinese) doi: 10.3969/j.issn.1006-2106.2020.03.006
    [123] 石晓宇. 桥墩不均匀沉降与梁体徐变上拱对高速铁路行车安全的影响研究[D]. 成都: 西南交通大学, 2018.

    SHI Xiao-yu. Influence of uneven settlement of bridge pier and creep camber of bridge girder on the running safety for high-speed railway[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [124] 和延年. 桥梁基础冻胀变形对高速铁路行车安全的影响研究[D]. 成都: 西南交通大学, 2019.

    HE Yan-nian. Effect of frost heave deformation of bridge foundation on running safety of high-speed railway[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
    [125] 郑晓龙, 徐昕宇, 陈克坚, 等. 高速铁路大跨度混凝土拱桥变形控制限值[J]. 中国铁道科学, 2019, 40(3): 60-64. doi: 10.3969/j.issn.1001-4632.2019.03.09

    ZHENG Xiao-long, XU Xin-yu, CHEN Ke-jian, et al. Deformation control limits for long-span concrete arch bridge of high-speed railway[J]. China Railway Science, 2019, 40(3): 60-64. (in Chinese) doi: 10.3969/j.issn.1001-4632.2019.03.09
    [126] 高芒芒, 赵会东, 许兆军. 高速铁路大跨度桥梁基于服役状态的健康监测指标研究[J]. 中国铁路, 2019(1): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201901003.htm

    GAO Mang-mang, ZHAO Hui-dong, XU Zhao-jun. Study on the heath monitoring index of in-service high speed railway long-span complex bridges[J]. China Railway, 2019(1): 15-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201901003.htm
    [127] ZHANG Xun, WEN Zhi-peng, CHEN Wen-su, et al. Dynamic analysis of coupled train-track-bridge system subjected to debris flow impact[J]. Advances in Structural Engineering, 2019, 22(4): 919-934. doi: 10.1177/1369433218785643
    [128] ZHANG Xun, WANG Xi-yang, CHEN Wen-su, et al. Numerical study of rockfall impact on bridge piers and its effect on the safe operation of high-speed trains[J]. Structure and Infrastructure Engineering, 2021, 17(1): 1-19. doi: 10.1080/15732479.2020.1730406
    [129] 李克冰, 张楠, 方翔宇, 等. 考虑河流冲刷作用的车桥耦合系统动力分析[J]. 振动与冲击, 2014, 33(19): 40-47, 73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201419009.htm

    LI Ke-bing, ZHANG Nan, FANG Xiang-yu, et al. Dynamic analysis of a vehicle-bridge coupled system considering river scouring[J]. Journalof Vibration and Shock, 2014, 33(19): 40-47, 73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201419009.htm
    [130] XIA He, ZHANG Nan, GUO Wei-wei. Dynamic Interaction of Train-Bridge Systems in High-Speed Railways: Theory and Applications[M]. Berlin: Springer, 2018.
    [131] 国巍, 李君龙, 刘汉云. 强地震下高速铁路桥上行车精细化模拟及行车安全性分析[J]. 工程力学, 2018, 35(S1): 259-264, 277. doi: 10.6052/j.issn.1000-4750.2017.06.S049

    GUO Wei, LI Jun-long, LIU Han-yun. The analysis of running safety of high-speed-train on bridge by using refined simulation considering strong earthquake[J]. Engineering Mechanics, 2018, 35(S1): 259-264, 277. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.S049
    [132] ZENG Qing, DIMITRAKOPOULOS E G. Vehicle-bridge interaction analysis modeling derailment during earthquakes[J]. Nonlinear Dynamics, 2018, 93(4): 2315-2337. doi: 10.1007/s11071-018-4327-6
    [133] 雷虎军, 黄江泽. 地震作用下445 m上承式高速铁路拱桥行车安全分析[J]. 铁道标准设计, 2018, 62(11): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201811019.htm

    LEI Hu-jun, HUANG Jiang-ze. Train running safety analysis of high-speed railway deck arch bridge of 445 m span under earthquake action[J]. Railway Standard Design, 2018, 62(11): 88-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201811019.htm
    [134] 余志武, 何华武, 蒋丽忠, 等. 多动力作用下高速铁路轨道-桥梁结构体系动力学及关键技术研究[J]. 土木工程学报, 2017, 50(11): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201711001.htm

    YU Zhi-wu, HE Hua-wu, JIANG Li-zhong, et al. Dynamics and key technology research on high-speed railway track-bridge system under multiple dynamic sources[J]. China Civil Engineering Journal, 2017, 50(11): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201711001.htm
    [135] 杨长卫, 童心豪, 连静, 等. 高速铁路地震预警系统三级警报阈值及其处置策略研究[J]. 铁道学报, 2019, 41(7): 88-94. doi: 10.3969/j.issn.1001-8360.2019.07.011

    YANG Chang-wei, TONG Xin-hao, LIAN Jing, et al. Research on warning threshold value optimization and responding strategy of earthquake early warning for high-speed railway[J]. Journal of the China Railway Society, 2019, 41(7): 88-94. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.07.011
    [136] 张楠, 夏禾, 郭薇薇, 等. 京沪高速铁路南京大胜关长江大桥风-车-桥耦合振动分析[J]. 中国铁道科学, 2009, 30(1): 41-48. doi: 10.3321/j.issn:1001-4632.2009.01.008

    ZHANG Nan, XIA He, GUO Wei-wei, et al. Analysis on the wind-vehicle-bridge coupling vibration for Nanjing Dashengguan Yangtze River Bridge of Beijing-Shanghai High-Speed Railway[J]. China Railway Science, 2009, 30(1): 41-48. (in Chinese) doi: 10.3321/j.issn:1001-4632.2009.01.008
    [137] 李小珍, 秦羽, 刘德军. 侧风作用下五峰山长江大桥列车行车安全控制[J]. 铁道工程学报, 2018, 35(7): 58-64. doi: 10.3969/j.issn.1006-2106.2018.07.011

    LI Xiao-zhen, QIN Yu, LIU De-jun. The safety control of train running on the Wufeng Mountain Yangtze River Bridge under crosswind[J]. Journal of Railway Engineering Society, 2018, 35(7): 58-64. (in Chinese) doi: 10.3969/j.issn.1006-2106.2018.07.011
    [138] 刘德军, 李小珍, 马松华, 等. 沪通长江大桥主航道桥风-车-轨-桥耦合振动研究[J]. 桥梁建设, 2015, 45(6): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201506011.htm

    LIU De-jun, LI Xiao-zhen, MA Song-hua, et al. Study of coupling vibration of wind-train-track-bridge system for main ship channel bridge of Hutong Changjiang River Bridge[J]. Bridge Construction, 2015, 45(6): 24-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201506011.htm
    [139] 李永乐, 朱佳琪, 赵凯, 等. 上海长江大桥风-轨道车辆-桥耦合振动及抗风行车准则研究[J]. 土木工程学报, 2012, 45(9): 108-114. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201209017.htm

    LI Yong-le, ZHU Jia-qi, ZHAO Kai, et al. Coupled vibration of wind-rail vehicle-bridge system for Shanghai Yangtze River Bridge and the wind-resistant criterion of running trains[J]. China Civil Engineering Journal, 2012, 45(9): 108-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201209017.htm
    [140] 李永乐, 董世赋, 臧瑜, 等. 大跨度公轨两用悬索桥风-车-桥耦合振动及抗风行车准则研究[J]. 工程力学, 2012, 29(12): 114-120. doi: 10.6052/j.issn.1000-4750.2011.03.0158

    LI Yong-le, DONG Shi-fu, ZANG Yu, et al. Coupling vibration of wind-vehicle-bridge system for long-span road-rail suspension bridge and resistant-wind criterion of running train[J]. Engineering Mechanics, 2012, 29(12): 114-120. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.03.0158
    [141] 崔圣爱, 刘品, 晏先娇, 等. 横风环境下跨海大桥列车-桥梁系统耦合振动仿真研究[J]. 铁道学报, 2020, 42(6): 93-101. doi: 10.3969/j.issn.1001-8360.2020.06.013

    CUI Sheng-ai, LIU Pin, YAN Xian-jiao, et al. Simulation study on coupled vibration of train-bridge system of cross-sea bridge under crosswind condition[J]. Journal of the China Railway Society, 2020, 42(6): 93-101. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.06.013
    [142] 郭文华, 洪新民, 陈春霞. 侧风下高铁列车交会运行时车-桥耦合振动[J]. 中国铁道科学, 2020, 41(4): 48-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202004006.htm

    GUO Wen-hua, HONG Xin-min, CHEN Chun-xia. Coupled vibration of train and bridge under high-speed trains passing each other in crosswind[J]. China Railway Science, 2020, 41(4): 48-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202004006.htm
    [143] 韩艳, 刘叶, 胡朋. 非定常气动荷载对桥上列车行驶安全舒适性影响分析[J]. 铁道科学与工程学报, 2020, 17(1): 118-128. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202001015.htm

    HAN Yan, LIU Ye, HU Peng. Impact analysis of unsteady aerodynamic loads on the safety and comfort of trains running on bridges[J]. Journal of Railway Science and Engineering, 2020, 17(1): 118-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202001015.htm
    [144] 刘高, 陈上有, 王昆鹏, 等. 跨海公铁两用桥梁车-桥-风浪流耦合振动研究[J]. 土木工程学报, 2019, 52(4): 72-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201904007.htm

    LIU Gao, CHEN Shang-you, WANG Kun-peng, et al. Study on coupling vibration of vehicle-bridge-wind-wave-current system of rail-cum-road sea bridge[J]. China Civil Engineering Journal, 2019, 52(4): 72-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201904007.htm
    [145] SHAO Xue-ming, WAN Jun, CHEN Da-wei, et al. Aerodynamic modeling and stability analysis of a high-speed train under strong rain and crosswind conditions[J]. Journal of Zhejiang University: SCIENCE A, 2011, 12(12): 964-970. doi: 10.1631/jzus.A11GT001
    [146] 勾红叶, 冷丹, 王涵玉, 等. 基于混合Copula函数的风雨联合概率分布模型[J]. 中国公路学报, 2021, 34(2): 309-316. doi: 10.3969/j.issn.1001-7372.2021.02.020

    GOU Hong-ye, LENG Dan, WANG Han-yu, et al. Joint probability distribution model of wind velocity and rainfall with mixed Copula function[J]. China Journal of Highway and Transport, 2021, 34(2): 309-316. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.02.020
    [147] 冷丹. 风雨耦合作用对高速铁路桥梁和车辆气动性能的影响机理研究[D]. 成都: 西南交通大学, 2020.

    LENG Dan. Study on the influence mechanism of the coupling effects of wind and rain on the aerodynamic performances of high-speed railway bridge and vehicle[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
    [148] GOU Hong-ye, LI Wen-hao, ZHOU Si-qing, et al. Dynamic response of high-speed train-track-bridge coupling system subjected to simultaneous wind and rain[J]. International Journal of Structural Stability and Dynamics, 2021, 21(11): 2150161. doi: 10.1142/S0219455421501613
    [149] 冉智文. 风雨环境下高速铁路桥上行车安全及综合评价体系研究[D]. 成都: 西南交通大学, 2020.

    RAN Zhi-wen. Study on running safety and comprehensive evaluation system of high-speed railway bridge under wind and rain condition[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
    [150] 崔阳阳, 熊红兵, 陈大伟, 等. 暴风雪条件下列车气动特性及倾覆稳定性分析[J]. 机电工程, 2012, 29(8): 877-881. doi: 10.3969/j.issn.1001-4551.2012.08.002

    CUI Yang-yang, XIONG Hong-bing, CHEN Da-wei, et al. Aerodynamic performance and overturning stability of high-speed trains in snowstorms[J]. Journal of Mechanical and Electrical Engineering, 2012, 29(8): 877-881. (in Chinese) doi: 10.3969/j.issn.1001-4551.2012.08.002
    [151] 崔阳阳. 基于OpenFOAM的高速列车多相流计算模型的开发和应用[D]. 杭州: 浙江大学, 2012.

    CUI Yang-yang. Development and application on multiphase flow computational model of high-speed train with OpenFOAM[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
    [152] 夏超逸, 雷俊卿, 张楠. 流冰撞击力作用下列车-简支梁桥耦合振动分析[J]. 振动与冲击, 2012, 31(13): 154-158. doi: 10.3969/j.issn.1000-3835.2012.13.032

    XIA Chao-yi, LEI Jun-qing, ZHANG Nan. Coupled vibration analysis for train and simply-supported bridge system subjected to floating-ice collision[J]. Journal of Vibration and Shock, 2012, 31(13): 154-158. (in Chinese) doi: 10.3969/j.issn.1000-3835.2012.13.032
    [153] 夏超逸, 张楠, 夏禾, 等. 船舶撞击作用下车桥系统动力响应及高速列车运行安全分析[J]. 振动与冲击, 2015, 34(6): 155-161. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201506030.htm

    XIA Chao-yi, ZHANG Nan, XIA He, et al. Dynamic analysis of a train-bridge system under vessel collision and running safety evaluation of its high-speed train[J]. Journal of Vibration and Shock, 2015, 34(6): 155-161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201506030.htm
    [154] 夏超逸, 张楠, 夏禾. 汽车撞击作用下车桥系统的动力响应及高速列车运行安全分析[J]. 工程力学, 2013, 30(8): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201308020.htm

    XIA Chao-yi, ZHANG Nan, XIA He. Dynamic responses of train-bridge system subjected to truck collision and running safety evaluation of high-speed train[J]. Engineering Mechanics, 2013, 30(8): 119-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201308020.htm
    [155] XIA Chao-yi, XIA He, DE ROECK G. Dynamic response of a train-bridge system under collision loads and running safety evaluation of high-speed trains[J]. Computers and Structures, 2014, 140: 23-38. doi: 10.1016/j.compstruc.2014.04.010
    [156] LI Peng-hao, LI Zhong-long, HAN Zhao-ling, et al. Running safety evaluation of high-speed train subject to the impact of floating ice collision on bridge piers[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2022, 236(3): 220-233. doi: 10.1177/09544097211010001
    [157] 杨尚福, 蔡成标, 朱胜阳, 等. 冲压机械振动对高铁桥梁及行车动力影响分析[J]. 铁道标准设计, 2019, 63(12): 96-101, 117. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201912019.htm

    YANG Shang-fu, CAI Cheng-biao, ZHU Sheng-yang, et al. Analysis of stamping machinery vibration impact on high-speed railway bridge and traffic[J]. Railway Standard Design, 2019, 63(12): 96-101, 117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201912019.htm
    [158] 向活跃, 陈绪黎, 李永乐. 基于ARMAX代理模型的车-桥耦合系统可靠性[J]. 西南交通大学学报, 2021, DOI: 10.3969/j.issn.0258-2724.20200118.

    XIANG Huo-yue, CHEN Xu-li, LI Yong-le. Reliability of coupling train-bridge systems by ARMAX surrogate model[J]. Journal of Southwest Jiaotong University, 2021, DOI: 10.3969/j.issn.0258-2724.20200118.(in Chinese)
    [159] 李永乐, 鲍玉龙, 向活跃. 基于代理模型的无砟轨道模拟方法及其在车-线-桥分析中的应用[J]. 土木工程学报, 2018, 51(5): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201805011.htm

    LI Yong-le, BAO Yu-long, XIANG Huo-yue. Simulation method and its application in dynamic analysis of vehicle-track-bridge system with ballastless track based on surrogate model[J]. China Civil Engineering Journal, 2018, 51(5): 95-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201805011.htm
    [160] HAN Xu, XIANG Huo-yue, LI Yong-le, et al. Predictions of vertical train-bridge response using artificial neural network-based surrogate model[J]. Advances in Structural Engineering, 2019, 22(12): 2712-2723. doi: 10.1177/1369433219849809
    [161] XIANG Huo-yue, TANG Ping, ZHANG Yuan, et al. Random dynamic analysis of vertical train-bridge systems under small probability by surrogate model and subset simulation with splitting[J]. Railway Engineering Science, 2020, 28(3): 305-315. doi: 10.1007/s40534-020-00219-6
    [162] 向活跃, 唐平, 王涛, 等. 基于子集分裂模拟的车-桥系统极值响应统计[J]. 振动与冲击, 2020, 39(5): 105-111, 136. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202005014.htm

    XIANG Huo-yue, TANG Ping, WANG Tao, et al. Extreme value response statistics of a vehicle-bridge system based on SS/S method[J]. Journal of Vibration and Shock, 2020, 39(5): 105-111, 136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202005014.htm
    [163] 唐兆, 董少迪, 罗仁, 等. 人工智能算法在铁道车辆动力学仿真中的应用进展[J]. 交通运输工程学报, 2021, 21(1): 250-266. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101015.htm

    TANG Zhao, DONG Shao-di, LUO Ren, et al. Application advances of artificial intelligence algorithms in dynamics simulation of railway vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 250-266. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101015.htm
    [164] SHAFIULLAH G M, ALI A B M S, THOMPSON A, et al. Predicting vertical acceleration of railway wagons using regression algorithms[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(2): 290-299. doi: 10.1109/TITS.2010.2041057
    [165] ZHENG Shu-bin, ZHONG Qian-wen, CHAI Xiao-dong, et al. A novel prediction model for car body vibration acceleration based on correlation analysis and neural networks[J]. Journal of Advanced Transportation, 2018, 2018: 1752070.
    [166] 杨桐, 董昱. 基于多传感器数据融合的道岔区脱轨系数预测算法[J]. 铁道科学与工程学报, 2020, 17(8): 1883-1892. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202008001.htm

    YANG Tong, DONG Yu. Prediction algorithm of derailment coefficient in turnout area based on multi-sensor data fusion[J]. Journal of Railway Science and Engineering, 2020, 17(8): 1883-1892. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202008001.htm
    [167] KRAFT S, CAUSSE J, MARTINEZ A. Black-box modelling of nonlinear railway vehicle dynamics for track geometry assessment using neural networks[J]. Vehicle System Dynamics, 2019, 57(9): 1241-1270. doi: 10.1080/00423114.2018.1497186
    [168] MARTIN T P, ZAAZAA K E, WHITTEN B, et al. Using a multibody dynamic simulation code with neural network technology to predict railroad vehicle-track interaction performance in real time[C]//ASME. Proceedings of ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York: ASME, 2007: 1881-1891.
    [169] LESTOILLE N, SOIZE C, FUNFSCHILLING C. Stochastic prediction of high-speed train dynamics to long-term evolution of track irregularities[J]. Mechanics Research Communications, 2016, 75: 29-39. doi: 10.1016/j.mechrescom.2016.05.007
    [170] ZENG Yuan-chen, ZHANG Wei-hua, SONG Dong-li, et al. Response prediction of stochastic dynamics by neural networks: theory and application on railway vehicles[J]. Computing in Science and Engineering, 2019, 21(3): 18-30. doi: 10.1109/MCSE.2018.2882328
    [171] QIAN Kun, LIANG Jie, GAO Yin-han. The prediction of vibration and noise for the high-speed train based on neural network and boundary element method[J]. Journal of Vibroengineering, 2015, 17(8): 4445-4457.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2186
  • HTML全文浏览量:  465
  • PDF下载量:  359
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-10
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回