留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内燃机活塞组件-缸套系统表面技术研究进展

吕延军 罗宏博 张永芳 康建雄 李鹏洲

吕延军, 罗宏博, 张永芳, 康建雄, 李鹏洲. 内燃机活塞组件-缸套系统表面技术研究进展[J]. 交通运输工程学报, 2022, 22(1): 24-41. doi: 10.19818/j.cnki.1671-1637.2022.01.002
引用本文: 吕延军, 罗宏博, 张永芳, 康建雄, 李鹏洲. 内燃机活塞组件-缸套系统表面技术研究进展[J]. 交通运输工程学报, 2022, 22(1): 24-41. doi: 10.19818/j.cnki.1671-1637.2022.01.002
LYU Yan-jun, LUO Hong-bo, ZHANG Yong-fang, KANG Jian-xiong, LI Peng-zhou. Research progress of surface technology in piston assembly-cylinder liner system of internal combustion engines[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 24-41. doi: 10.19818/j.cnki.1671-1637.2022.01.002
Citation: LYU Yan-jun, LUO Hong-bo, ZHANG Yong-fang, KANG Jian-xiong, LI Peng-zhou. Research progress of surface technology in piston assembly-cylinder liner system of internal combustion engines[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 24-41. doi: 10.19818/j.cnki.1671-1637.2022.01.002

内燃机活塞组件-缸套系统表面技术研究进展

doi: 10.19818/j.cnki.1671-1637.2022.01.002
基金项目: 

国家自然科学基金项目 52075438

陕西省重点研发计划 2020GY-106

机械制造系统工程国家重点实验室开放课题 sklms2020010

详细信息
    作者简介:

    吕延军(1972-), 男,陕西韩城人,西安理工大学教授,工学博士,从事工业润滑与摩擦学研究

  • 中图分类号: U464

Research progress of surface technology in piston assembly-cylinder liner system of internal combustion engines

Funds: 

National Natural Science Foundation of China 52075438

Key Research and Development Program of Shaanxi Province 2020GY-106

Open Project of State Key Laboratory for Manufacturing Systems Engineering sklms2020010

More Information
  • 摘要: 通过分析与总结国内外内燃机活塞组件-缸套系统表面技术研究现状和发展趋势,梳理了表面织构和表面涂层技术在内燃机关键运动副减摩抗磨与节能应用中的特点; 剖析了表面织构加工技术、表面织构形貌特征与分布、表面涂层制备工艺、表面耐磨涂层、表面热障涂层和表面技术与润滑的协同效应对运动副摩擦性能的影响。分析结果表明:激光表面织构(LST)能有效改善运动副表面的摩擦学性能,直接/间接激光冲击表面织构(LSSP)技术已成为高效、灵活的表面织构加工方法,但由于织构加工工艺、形貌和分布特征对摩擦学性能的影响较为复杂,仍需进一步结合内燃机活塞组件-缸套系统的工况特性研究并优化表面织构的形貌和分布特征; 大气等离子喷涂(APS)和超音速火焰(HVOF)喷涂制备的耐磨涂层和热障涂层(TBC)具有良好的耐磨、隔热和抗氧化性,可使内燃机活塞组件-缸套系统表面金属基复合材料、类金刚石(DLC)材料、纳米复合材料和陶瓷材料涂层的减摩抗磨和节能成效明显,但涂层材料种类繁多,很难形成统一的行业标准、规范以及工业化应用; 内燃机活塞组件-缸套系统的动力学特性和表面织构、表面涂层与润滑的协同作用复杂,将来仍需综合考虑多场条件下各种表面技术耦合的减摩抗磨机理,进一步完善内燃机活塞组件-缸套系统表面复合理论和技术体系,为内燃机产业的绿色和高效发展提供技术指导。

     

  • 图  1  内燃机中的能量分布

    Figure  1.  Distributions of energy in internal combustion engine

    图  2  活塞组件-缸套系统表面工程技术路线

    Figure  2.  Technical route of surface engineering in piston assembly-cylinder liner

    图  3  激光表面织构加工原理

    Figure  3.  Schematic of LST process

    图  4  激光冲击加工原理

    Figure  4.  Schematic of LSP

    图  5  间接激光冲击加工示意

    Figure  5.  Schematic of indirect LSSP process

    图  6  活塞环表面织构

    Figure  6.  Surface texture of piston ring

    图  7  不同形状表面织构在不同载荷下的平均摩擦因数

    Figure  7.  Mean friction factors of surface textures with different shapes at different loads

    图  8  不同织构形状和方向在不同速度下的平均压力

    Figure  8.  Average pressures of different textural shapes and orientations at different speeds

    图  9  不同分布角的LST磨痕深度

    Figure  9.  Wear scar depths for different distribution angles with LST

    图  10  不同涂层材料下缸体磨损

    Figure  10.  Wear of cylinder blocks with different coating materials

    图  11  不同缸套在不同速度下的平均功率损失

    Figure  11.  Mean power losses for alternative cylinder liners at different speeds

    图  12  不同TBC结构

    Figure  12.  Different TBC architectures

    图  13  有无织构活塞环的动压摩擦力

    Figure  13.  Dynamic pressure friction forces in textured and untextured piston rings

    图  14  有无涂层活塞裙的摩擦功率损失

    Figure  14.  Friction power losses in piston skirts with and without coating

    表  1  汽油机和柴油机活塞组件材料和表面技术比较

    Table  1.   Comparison of piston assembly materials and surface technologies between gasoline engine and diesel engine

    内燃机类型 汽油机 柴油机
    活塞材料 铝硅合金 铝硅合金、铸铁
    活塞环材料 钢(合金)、灰铸铁(合金和调质) 球墨铸铁(合金和调质)、18%铬钢
    表面织构技术与形状 珩磨、激光表面织构(Laser Surface Texture, LST)、光刻、电铸和注塑(Lithographie Galvanoformung Abformung, LIGA)、电解加工,微小凹坑、微小沟槽、仿生几何形貌 珩磨、LST、LIGA、电解加工、微小凹坑、微小沟槽、仿生几何形貌
    表面涂层技术与材料 电镀、大气等离子喷涂(Air Plasma Spraying, APS)、超音速火焰(High Velocity Oxy-Fuel, HVOF)喷涂、石墨、TinO2n-1、类金刚石(Diamond-Like Carbon, DLC)、SiC-Al2O3、Mo-(NiCr-Cr3C2) 电镀、APS、HVOF、DLC、氧化锆、MoN、WC/CrC、Cr3C2/NiCr
    下载: 导出CSV

    表  2  激光表面织构技术比较

    Table  2.   Comparison of LST technologies

    评估标准 激光烧蚀 激光干涉 激光冲击加工 直接/间接激光冲击加工
    灵活性 ★★★★ ★★★★ ★★★ ★★★★
    效率 ★★★ ★★★★★ ★★★ ★★★★
    织构特征分辨极限 1 μm钛合金 0.1 μm硅基材料 10 μm铝合金 2 μm镁铝合金
    表面硬化机理 热致相变(只对某些特定金属) 热致相变(只对某些特定金属) 表面塑性变形(对所有金属材料) 表面塑性变形
    适用材料 金属、聚合物、陶瓷和复合材料 金属、聚合物、陶瓷和复合材料 金属材料 大多数金属材料
    缺点 精度和灵活性受限 材料退化、相变、残余热应力、表面氧化 低效率、低扩展性 高应力
    成本 ★★★★ ★★★ ★★★ ★★★★
    下载: 导出CSV

    表  3  APS和HVOF热喷涂技术性能比较

    Table  3.   Property comparison of thermal spraying technologies using APS and HVOF

    喷涂方法 APS HVOF
    火焰温度/℃ 10 000~30 000 2 500~3 100
    粒子速度/(m·s-1) 200~500 400~800
    结合强度/(N·mm-2) 30~70 70~110
    孔隙率/% < 5 < 1
    喷涂效率/(kg·h-1) 2~10 1~5
    适用材料 各种陶瓷,高熔点、耐磨、耐热材料 金属及其合金粉末,易氧化、失碳和降解的纳米硬质耐磨涂层
    涂层优点 控制方便、准确,氧化物和杂质含量少; 对基体适应能力强; 厚度、硬度和防腐效果等方面比传统方法效果好,有较强的环境适应能力 表面光滑,喷涂速度快,沉积率高; 氧化物含量低,化学成分和相组成稳定
    缺点 对工作气体的纯度要求高; 小孔径内表面喷涂困难; 喷涂时劳动保护要求高,喷涂过程会产生巨大噪声、强光辐射、有害气体(臭氧、氮氧化物等)、金属蒸汽粉尘等 排放物对环境有害,功能扩展性受限
    成本 设备投资大,成本高 燃料消耗大,成本较高
    下载: 导出CSV
  • [1] LEACH F, KALGHATGI G, STONE R, et al. The scope for improving the efficiency and environmental impact of internal combustion engines[J]. Transportation Engineering, 2020, 1: 100005. doi: 10.1016/j.treng.2020.100005
    [2] DOLATABADI N, FORDER M, MORRIS N, et al. Influence of advanced cylinder coatings on vehicular fuel economy and emissions in piston compression ring conjunction[J]. Applied Energy, 2020, 259: 114129. doi: 10.1016/j.apenergy.2019.114129
    [3] TARTAKOVSKY L, SHEINTUCH M. Fuel reforming in internal combustion engines[J]. Progress in Energy and Combustion Science, 2018, 67: 88-114. doi: 10.1016/j.pecs.2018.02.003
    [4] RAHMANI R, RAHNEJAT H, FITZSIMONS B, et al. The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction[J]. Applied Energy, 2017, 191: 568-581. doi: 10.1016/j.apenergy.2017.01.098
    [5] MISHRA P C. A review of piston compression ring tribology[J]. Tribology in Industry, 2014, 36(3): 269-280.
    [6] GACHOT C, ROSENKRANZ A, HSU S M, et al. A critical assessment of surface texturing for friction and wear improvement[J]. Wear, 2017, 372/373: 21-41. doi: 10.1016/j.wear.2016.11.020
    [7] HE Yu, ZOU Ping, ZHU Zhi-wei, et al. Design and application of a flexure-based oscillation mechanism for surface texturing[J]. Journal of Manufacturing Processes, 2018, 32: 298-306. doi: 10.1016/j.jmapro.2018.02.017
    [8] SUNDARARAJAN G, JOSHI S V, KRISHNA L R. Engineered surfaces for automotive engine and power train components[J]. Current Opinion in Chemical Engineering, 2016, 11: 1-6. doi: 10.1016/j.coche.2015.10.001
    [9] USMAN A, PARK C W. Optimizing the tribological performance of textured piston ring-liner contact for reduced frictional losses in SI engine: warm operating conditions[J]. Tribology International, 2016, 99: 224-236. doi: 10.1016/j.triboint.2016.03.030
    [10] WAN Shan-hong, LI Dong-shan, ZHANG Guang-an, et al. Comparison of the scuffing behaviour and wear resistance of candidate engineered coatings for automotive piston rings[J]. Tribology International, 2017, 106: 10-22. doi: 10.1016/j.triboint.2016.10.026
    [11] GU Chun-xing, MENG Xiang-hui, ZHANG Di. Analysis of the coated and textured ring/liner conjunction based on a thermal mixed lubrication model[J]. Friction, 2018, 6(4): 420-431. doi: 10.1007/s40544-017-0176-4
    [12] WONG V W, TUNG S C. Overview of automotive engine friction and reduction trends—effects of surface, material, and lubricant-additive technologies[J]. Friction, 2016, 4(1): 1-28. doi: 10.1007/s40544-016-0107-9
    [13] DURONIO F, DE VITA A, MONTANARO A, et al. Gasoline direct injection engines—a review of latest technologies and trends. Part 2[J]. Fuel, 2020, 265: 116947. doi: 10.1016/j.fuel.2019.116947
    [14] 吕延军, 康建雄, 张永芳, 等. 内燃机活塞-缸套系统减摩抗磨研究进展[J]. 交通运输工程学报, 2020, 20(4): 21-34. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202004006.htm

    LYU Yan-jun, KANG Jian-xiong, ZHANG Yong-fang, et al. Research progress of anti-friction and anti-wear of piston-cylinder liner system in internal combustion engine[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 21-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202004006.htm
    [15] HATAMI M, HASANPOUR M, JING Deng-wei. Recent developments of nanoparticles additives to the consumables liquids in internal combustion engines: Part Ⅱ: nano-lubricants[J]. Journal of Molecular Liquids, 2020, 319: 114156. doi: 10.1016/j.molliq.2020.114156
    [16] GROPPER D, WANG Ling, HARVEY T J. Hydrodynamic lubrication of textured surfaces: a review of modeling techniques and key findings[J]. Tribology International, 2016, 94: 509-529. doi: 10.1016/j.triboint.2015.10.009
    [17] RYK G, ETSION I. Testing piston rings with partial laser surface texturing for friction reduction[J]. Wear, 2006, 261(7/8): 792-796.
    [18] MARCHETTO D, ROTA A, CALABRI L, et al. AFM investigation of tribological properties of nano-patterned silicon surface[J]. Wear, 2008, 265(5/6): 577-582.
    [19] PETTERSSON U, JACOBSON S. Friction and wear properties of micro textured DLC coated surfaces in boundary lubricated sliding[J]. Tribology Letters, 2004, 17(3): 553-559. doi: 10.1023/B:TRIL.0000044504.76164.4e
    [20] LI Ning, XU Er-jiang, LIU Ze, et al. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces[J]. Scientific Reports, 2016, 6(1): 39388. doi: 10.1038/srep39388
    [21] CHEN Luan-xia, LIU Zhan-qiang, SHEN Qi. Enhancing tribological performance by anodizing micro-textured surfaces with nano-MoS2 coatings prepared on aluminum-silicon alloys[J]. Tribology International, 2018, 122: 84-95. doi: 10.1016/j.triboint.2018.02.039
    [22] WALKER J C, KAMPS T J, LAM J W, et al. Tribological behaviour of an electrochemical jet machined textured Al-Si automotive cylinder liner material[J]. Wear, 2017, 376/377: 1611-1621. doi: 10.1016/j.wear.2017.01.085
    [23] GRECO A, RAPHAELSON S, EHMANN K, et al. Surface texturing of tribological interfaces using the vibromechanical texturing method[J]. Journal of Manufacturing Science and Engineering, 2009, 131(6): 061005 doi: 10.1115/1.4000418
    [24] SINGH A, HARIMKAR S P. Laser surface engineering of magnesium alloys: a review[J]. Journal of the Minerals, Metals and Materials Society, 2012, 64(6): 716-733. doi: 10.1007/s11837-012-0340-2
    [25] BAHARIN A F S, GHAZALI M J, WAHAB J A, et al. Laser surface texturing and its contribution to friction and wear reduction: a brief review[J]. Industrial Lubrication and Tribology, 2016, 68(1): 57-66. doi: 10.1108/ILT-05-2015-0067
    [26] MAO Bo, SIDDAIAH A, LIAO Yi-liang, et al. Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: a review[J]. Journal of Manufacturing Processes, 2020, 53: 153-173. doi: 10.1016/j.jmapro.2020.02.009
    [27] KLINK U, 蔡杰. 气缸工作表面的激光珩磨[J]. 国外内燃机, 1998, 30(2): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-GWLR199802008.htm

    KLINK U, CAI Jie. Laser honing of cylinder working surface[J]. Foreign Internal Combustion Engine, 1998, 30(2): 50-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWLR199802008.htm
    [28] SYED B, SHARIFF S M, PADMANABHAM G, et al. Influence of laser surface hardened layer on mechanical properties of re-engineered low carbon steel sheet[J]. Materials Science and Engineering: A, 2017, 685: 168-177. doi: 10.1016/j.msea.2016.12.124
    [29] MAO Bo, LIAO Yi-liang, LI Bin. Gradient twinning microstructure generated by laser shock peening in an AZ31B magnesium alloy[J]. Applied Surface Science, 2018, 457: 342-351. doi: 10.1016/j.apsusc.2018.06.176
    [30] MONTROSS C S, WEI Tao, YE Lin, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. International Journal of Fatigue, 2002, 24(10): 1021-1036. doi: 10.1016/S0142-1123(02)00022-1
    [31] KATTOURA M, MANNAVA S R, QIAN Dong, et al. Effect of laser shock peening on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy[J]. International Journal of Fatigue, 2017, 102: 121-134. doi: 10.1016/j.ijfatigue.2017.04.016
    [32] LI Kang-mei, YAO Zhen-qiang, HU Yong-xiang, et al. Friction and wear performance of laser peen textured surface under starved lubrication[J]. Tribology International, 2014, 77: 97-105. doi: 10.1016/j.triboint.2014.04.017
    [33] YAKIMETS I, RICHARD C, BÉRANGER G, et al. Laser peening processing effect on mechanical and tribological properties of rolling steel 100Cr6[J]. Wear, 2004, 256(3/4): 311-320.
    [34] LIM H, KIM P, JEONG H, et al. Enhancement of abrasion and corrosion resistance of duplex stainless steel by laser shock peening[J]. Journal of Materials Processing Technology, 2012, 212(6): 1347-1354. doi: 10.1016/j.jmatprotec.2012.01.023
    [35] WANG Hao, NING Cheng-yi, HUANG Yi-hui, et al. Improvement of abrasion resistance in artificial seawater and corrosion resistance in NaCl solution of 7075 aluminum alloy processed by laser shock peening[J]. Opticsand Lasers in Engineering, 2017, 90(5): 179-185.
    [36] MAO Bo, SIDDAIAH A, MENEZES P L, et al. Surface texturing by indirect laser shock surface patterning for manipulated friction coefficient[J]. Journal of Materials Processing Technology, 2018, 257: 227-233. doi: 10.1016/j.jmatprotec.2018.02.041
    [37] SEDLAČEK M, GREGORČIČ P, PODGORNIK B. Use of the roughness parameters Ssk and Sku to control friction—a method for designing surface texturing[J]. Tribology Transactions, 2017, 60(2): 260-266. doi: 10.1080/10402004.2016.1159358
    [38] 胡勇, 屈盛官, 李彬, 等. 不同表面织构对柴油机缸套-活塞环摩擦磨损性能的影响[J]. 润滑与密封, 2013, 38(4): 57-62. doi: 10.3969/j.issn.0254-0150.2013.04.013

    HU Yong, QU Sheng-guan, LI Bin, et al. Effects of different surface textures on friction and wear performance of diesel cylinder liner-piston ring[J]. Lubrication Engineering, 2013, 38(4): 57-62. (in Chinese) doi: 10.3969/j.issn.0254-0150.2013.04.013
    [39] 饶响, 盛晨兴, 郭智威. 不同表面纹理结构对柴油机缸套-活塞环摩擦磨损性能的影响研究[J]. 兵工学报, 2018, 39(2): 356-363. doi: 10.3969/j.issn.1000-1093.2018.02.019

    RAO Xiang, SHENG Chen-xing, GUO Zhi-wei. Research on the friction and wear properties of diesel engine cylinder liner with different surface textures[J]. Acta Armamentarii, 2018, 39(2): 356-363. (in Chinese) doi: 10.3969/j.issn.1000-1093.2018.02.019
    [40] CHARITOPOULOS A G, EFSTATHIOU E E, PAPADOPOULOS C I, et al. Effects of manufacturing errors on tribological characteristics of 3-D textured micro-thrust bearings[J]. CIRP Journal of Manufacturing Science and Technology, 2013, 6(2): 128-142. doi: 10.1016/j.cirpj.2012.12.001
    [41] COSTA H L, HUTCHINGS I M. Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions[J]. Tribology International, 2007, 40(8): 1227-1238. doi: 10.1016/j.triboint.2007.01.014
    [42] 阮鸿雁, 吕建军, 司辉, 等. 不同织构表面的动压润滑性能研究[J]. 中国机械工程, 2009, 20(9): 1033-1036. doi: 10.3321/j.issn:1004-132X.2009.09.007

    RUAN Hong-yan, LYU Jian-jun, SI Hui, et al. Research on hydrodynamic lubrication of different surface texture[J]. China Mechanical Engineering, 2009, 20(9): 1033-1036. (in Chinese) doi: 10.3321/j.issn:1004-132X.2009.09.007
    [43] HUA Xi-jun, SUN Jian-guo, ZHANG Pei-yun, et al. Research on discriminating partition laser surface micro-texturing technology of engine cylinder[J]. Tribology International, 2016, 98: 190-196. doi: 10.1016/j.triboint.2016.02.010
    [44] 江仁埔, 郭智威, 饶响, 等. 表面织构对缸套-活塞环摩擦学性能的影响[J]. 内燃机学报, 2018, 36(5): 471-479. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX201805012.htm

    JIANG Ren-pu, GUO Zhi-wei, RAO Xiang, et al. Influences of thread grooves surface texturing on the tribological properties of cylinder liner-piston ring[J]. Transactions of CSICE, 2018, 36(5): 471-479. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX201805012.htm
    [45] XU Yu-fu, PENG Yu-bin, DEARN K D, et al. Fabrication and tribological characterization of laser textured boron cast iron surfaces[J]. Surface and Coatings Technology, 2017, 313: 391-401. doi: 10.1016/j.surfcoat.2017.02.005
    [46] 刘郡, 张执南, 谢友柏. 低黏度润滑油与织构对活塞环-缸套摩擦特性的影响[J]. 上海交通大学学报, 2018, 52(5): 505-510. doi: 10.3969/j.issn.1674-8115.2018.05.004

    LIU Jun, ZHANG Zhi-nan, XIE You-bai. Effect of low viscosity oil and surface texture on friction characteristics of piston ring-liner[J]. Journal of Shanghai Jiao Tong University, 2018, 52(5): 505-510. (in Chinese) doi: 10.3969/j.issn.1674-8115.2018.05.004
    [47] ZHANG Hui, HUA Meng, DONG Guo-zhong, et al. Optimization of texture shape based on genetic algorithm under unidirectional sliding[J]. Tribology International, 2017, 115: 222-232. doi: 10.1016/j.triboint.2017.05.017
    [48] 麻凯, 郭智威, 缪晨炜, 等. 活塞环表面织构对缸套-活塞环摩擦学性能的影响[J]. 机械科学与技术, 2019, 38(7): 1109-1117. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201907016.htm

    MA Kai, GUO Zhi-wei, MIAO Chen-wei, et al. Influence of surface textured piston ring on tribological performance of cylinder liner-piston ring[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(7): 1109-1117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201907016.htm
    [49] SHEN Cong, KHONSARI M M. The effect of laser machined pockets on the lubrication of piston ring prototypes[J]. Tribology International, 2016, 101: 273-283. doi: 10.1016/j.triboint.2016.04.009
    [50] YU Hai-wu, WANG Xiao-lei, ZHOU Fei. Geometric shape effects of surface texture on the generation of hydrodynamic pressure between conformal contacting surfaces[J]. Tribology Letters, 2010, 37(2): 123-130. doi: 10.1007/s11249-009-9497-4
    [51] EZHILMARAN V, VASA N J, VIJAYARAGHAVAN L. Investigation on generation of laser assisted dimples on piston ring surface and influence of dimple parameters on friction[J]. Surface and Coatings Technology, 2018, 335: 314-326. doi: 10.1016/j.surfcoat.2017.12.052
    [52] USMAN A, PARK C W. Optimizing the tribological performance of textured piston ring-liner contact for reduced frictional losses in SI engine: warm operating conditions[J]. Tribology International, 2016, 99: 224-236. doi: 10.1016/j.triboint.2016.03.030
    [53] RAO Xiang, SHENG Chen-xing, GUO Zhi-wei, et al. Effects of thread groove width in cylinder liner surface on performances of diesel engine[J]. Wear, 2019, 426/427: 1296-1303. doi: 10.1016/j.wear.2018.12.070
    [54] ZHOU Yuan-kai, ZHU Hua, TANG Wei, et al. Development of the theoretical model for the optimal design of surface texturing on cylinder liner[J]. Tribology International, 2012, 52: 1-6. doi: 10.1016/j.triboint.2011.12.017
    [55] RYK G, ETSION I. Testing piston rings with partial laser surface texturing for friction reduction[J]. Wear, 2006, 261(7/8): 792-796.
    [56] ETSION I, SHER E. Improving fuel efficiency with laser surface textured piston rings[J]. Tribology International, 2009, 42(4): 542-547. doi: 10.1016/j.triboint.2008.02.015
    [57] 严东升. 活塞环表面织构的摩擦学性能基础研究[D]. 南京: 南京航空航天大学, 2009.

    YAN Dong-sheng. Fundamental research on tribological performance of textured piston ring[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)
    [58] 许长坤, 郭智威, 缪晨炜, 等. 活塞环表面织构密度对缸套-活塞环摩擦性能的影响[J]. 机械科学与技术, 2020, 39(10): 1489-1496. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202010004.htm

    XU Chang-kun, GUO Zhi-wei, MIAO Chen-wei, et al. Effect of texture density in surface of piston ring on tribological performance of cylinder liner-piston ring[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1489-1496. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202010004.htm
    [59] ZHAN Jian, YANG Ming-jiang. Investigation on dimples distribution angle in laser texturing of cylinder-piston ring system[J]. Tribology Transactions, 2012, 55(5): 693-697. doi: 10.1080/10402004.2012.694581
    [60] DAVIS D, SRIVASTAVA M, MALATHI M, et al. Effect of Cr2AlC MAX phase addition on strengthening of Ni-Mo-Al alloy coating on piston ring: tribological and twist-fatigue life assessment[J]. Applied Surface Science, 2018, 449: 295-303. doi: 10.1016/j.apsusc.2018.01.146
    [61] UOZATO S, NAKATA K, USHIO M. Evaluation of ferrous powder thermal spray coatings on diesel engine cylinder bores[J]. Surface and Coatings Technology, 2005, 200(7): 2580-2586. doi: 10.1016/j.surfcoat.2005.05.042
    [62] GERALD O J, LI Wen-ge, ZHAO Yuan-tao, et al. Influence of plasma spraying current on the microstructural characteristics and tribological behaviour of plasma sprayed Cr2O3 coating[J]. Boletín de la Sociedad Espaola de Cerámicay Vidrio, 2021, 60(6): 338-346. doi: 10.1016/j.bsecv.2020.03.007
    [63] 曹玉霞, 杜令忠, 张伟刚, 等. 等离子喷涂NiCoCrAlY/Al2O3涂层的制备及摩擦性能研究[J]. 表面技术, 2015, 44(5): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201505012.htm

    CAO Yu-xia, DU Ling-zhong, ZHANG Wei-gang, et al. Study on preparation and tribological properties of atmospheric plasma-sprayed NiCoCrAlY/Al2O3 wear-resistant coatings[J]. Surface technology, 2015, 44(5): 62-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201505012.htm
    [64] 刘黎明. 气缸内壁耐磨涂层的制备及其摩擦学性能研究[D]. 扬州: 扬州大学, 2018.

    LIU Li-ming. Preparation of cylinder inner wall wear-resistant coating and study on its tribological performance[D]. Yangzhou: Yangzhou University, 2018. (in Chinese)
    [65] MANZAT A, KILLINGER A, GADOW R, 等. 超音速火焰喷涂气缸内壁涂层及其固有孔隙的益处[J]. 热喷涂技术, 2012, 4(2): 57-64. doi: 10.3969/j.issn.1674-7127.2012.02.013

    MANZAT A, KILLINGER A, GADOW R, et al. Supersonic flame sprayed cylinder liner coatings and the benefits of their intrinsic porosity[J]. Thermal Spray Technology, 2012, 4(2): 57-64. (in Chinese) doi: 10.3969/j.issn.1674-7127.2012.02.013
    [66] KARAOGLANLI A C, ALTUNCU E, OZDEMIR I, et al. Structure and durability evaluation of YSZ+Al2O3 composite TBCs with APS and HVOF bond coats under thermal cycling conditions[J]. Surface and Coatings Technology, 2011, 205: 369-373. doi: 10.1016/j.surfcoat.2011.04.081
    [67] 徐国, 郑卫刚. 超音速火焰喷涂在活塞环表面改性中的应用探究[J]. 热加工工艺, 2014, 43(14): 167-168. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201414047.htm

    XU Guo, ZHENG Wei-gang. Research on application of HVOF in surface modification of piston ring[J]. Hot Working Technology, 2014, 43(14): 167-168. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201414047.htm
    [68] 黄博, 吴庆丹, 魏新龙, 等. 超音速火焰喷涂WC-10Co-4Cr涂层的摩擦腐蚀性能研究[J]. 表面技术, 2020, 49(1): 285-293. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202001035.htm

    HUANG Bo, WU Qing-dan, WEI Xin-long, et al. Tribocorrosion behaviors of high velocity oxygen-fuel sprayed WC-10Co-4Cr coatings[J]. Surface Technology, 2020, 49(1): 285-293. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202001035.htm
    [69] YANG Wen-jin, ZOU Lang, CAO Xiao-ying, et al. Fretting wear properties of HVOF-sprayed CoMoCrSi coatings with different spraying parameters[J]. Surface and Coatings Technology, 2019, 358: 994-1005. doi: 10.1016/j.surfcoat.2018.12.039
    [70] QIAO Lei, WU Yu-ping, HONG Sheng, et al. Ultrasonic cavitation erosion mechanism and mathematical model of HVOF sprayed Fe-based amorphous/nanocrystalline coatings[J]. Ultrasonics Sonochemistry, 2019, 52: 142-149. doi: 10.1016/j.ultsonch.2018.11.010
    [71] NIRANATLUMPONG P, KOIPRASERT H. The effect of Mo content in plasma-sprayed Mo-NiCrBSi coating on the tribological behavior[J]. Surface and Coatings Technology, 2010, 205(2): 483-489. doi: 10.1016/j.surfcoat.2010.07.017
    [72] SKOPP A, KELLING N, WOYDT M, et al. Thermally sprayed titanium suboxide coatings for piston ring/cylinder liners under mixed lubrication and dry-running conditions[J]. Wear, 2007, 262(9/10): 1061-1070.
    [73] 何哲宇. 活塞环用Mo及Mo基复合涂层的摩擦磨损性能研究[D]. 湘潭: 湖南科技大学, 2016.

    HE Zhe-yu. Friction and wear properties of Mo and Mo based composition coating for piston rings[D]. Xiangtan: Hunan University of Science and Technology, 2016. (in Chinese)
    [74] 郭永明, 李绪强, 王海军, 等. 超音速等离子喷涂NiCr-Cr3C2/Mo复合涂层的高温摩擦磨损性能[J]. 中国表面工程, 2012, 25(5): 31-36. doi: 10.3969/j.issn.1007-9289.2012.05.006

    GUO Yong-ming, LI Xu-qiang, WANG Hai-jun, et al. Tribological behavior of supersonic plasma spraying NiCr-Cr3C2/Mo composited coatings at high temperature[J]. China Surface Engineering, 2012, 25(5): 31-36. (in Chinese) doi: 10.3969/j.issn.1007-9289.2012.05.006
    [75] RASTEGAR F, RICHARDSON D E. Alternative to chrome: HVOF cermet coatings for high horse power diesel engines[J]. Surface and Coatings Technology, 1997, 90(1/2): 156-163.
    [76] LARIBI M, VANNES A B, TREHEUX D. Study of mechanical behavior of molybdenum coating using sliding wear and impact tests[J]. Wear, 2007, 262(11/12): 1330-1336.
    [77] CHO D H, LEE Y Z. Evaluation of ring surfaces with several coatings for friction, wear and scuffing life[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(4): 992-996. doi: 10.1016/S1003-6326(08)60393-3
    [78] ARAUJO J A, BANFIELD R R. DLC as alow friction coating for engine components[J]. SAE Technical Papers, 2012-36-0255.
    [79] 王星, 程伟胜. 类金刚石涂层在活塞环上的应用[J]. 汽车与新动力, 2019, 2(3): 60-63. doi: 10.3969/j.issn.2096-4870.2019.03.013

    WANG Xing, CHENG Wei-sheng. Application of diamond-like carbon coating on piston ring[J]. Automobile and New Powertrain, 2019, 2(3): 60-63. (in Chinese) doi: 10.3969/j.issn.2096-4870.2019.03.013
    [80] KOSZELA W, PAWLUS P, REIZER R, et al. The combined effect of surface texturing and DLC coating on the functional properties of internal combustion engines[J]. Tribology International, 2018, 127: 470-477. doi: 10.1016/j.triboint.2018.06.034
    [81] TAS M O, BANERJI A, LOU M, et al. Roles of mirror-like surface finish and DLC coated piston rings on increasing scuffing resistance of cast iron cylinder liners[J]. Wear, 2017, 376/377: 1558-1569. doi: 10.1016/j.wear.2017.01.110
    [82] DAHOTRE N B, NAYAK S. Nanocoatings for engine application[J]. Surface and Coatings Technology, 2005, 194(1): 58-67. doi: 10.1016/j.surfcoat.2004.05.006
    [83] RAGHAVENDRA C R, BASAVARAJAPPA S, SOGALAD I. Multi-objective optimization of electrodeposition of Ni-Al2O3 nano composite coating on Al6061 substrate[J]. Transactions of the Indian Institute of Metals, 2018, 71(9): 2110-2132.
    [84] UMAPATHI D, DEVARAJU A, RATHINASURIYAN C, et al. Mechanical and tribological properties of electroless nickel phosphorous and nickel phosphorous-titanium nitride coating[J]. Materials Today Proceedings, 2020, 22: 1038-1042. doi: 10.1016/j.matpr.2019.11.283
    [85] DOLATABADI N, FORDER M, MORRIS N, et al. Influence of advanced cylinder coatings on vehicular fuel economy and emissions in piston compression ring conjunction[J]. Applied Energy, 2020, 259(1): 114129.
    [86] ZHANG Yu-juan, ZHANG Sheng-mo, SUN D, et al. Wide adaptability of Cu nano-additives to the hardness and composition of DLC coatings in DLC/PAO solid-liquid composite lubricating system[J]. Tribology International, 2019, 138: 184-195. doi: 10.1016/j.triboint.2019.05.043
    [87] GÓRAL A, LITYŃSKA-DOBRZYŃSKA L, KOT M, et al. Effect of surface roughness and structure features on tribological properties of electrodeposited nanocrystalline Ni and Ni/Al2O3 coatings[J]. Journal of Materials Engineering and Performance, 2017, 26(5): 2118-2128. doi: 10.1007/s11665-017-2662-2
    [88] RAGHAVENDRA C R, BASAVARAJAPPA S, SOGALAD I, et al. Study on Ni composite coating on Al6061 substrate material with different nano particle reinforcement by electrodeposition process[J]. Materials Today: Proceedings, 2020, 24(2): 1680-1685.
    [89] BAJWA R S, KHAN Z, BAKOLAS V, et al. Water- lubricated Ni-based composite (Ni-Al2O3, Ni-SiC and Ni-ZrO2) thin film coatings for industrial applications[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(1): 8-16. doi: 10.1007/s40195-015-0354-1
    [90] VAßEN R, JARLIGO M O, STEINKE T, et al. Overview on advanced thermal barrier coatings[J]. Surface and Coatings Technology, 2010, 205(4): 938-942. doi: 10.1016/j.surfcoat.2010.08.151
    [91] CERIT M. Thermo mechanical analysis of a partially ceramic coated piston used in an SI engine[J]. Surface and Coatings Technology, 2011, 205(11): 3499-3505. doi: 10.1016/j.surfcoat.2010.12.019
    [92] YAO Zhi-min, QIAN Zuo-qin. Thermal analysis of nano ceramic coated piston used in natural gas engine[J]. Journal of Alloys and Compounds, 2018, 768: 441-450. doi: 10.1016/j.jallcom.2018.07.278
    [93] DE GOES U W, MARKOCSAN N, GUPTA M, et al. Thermal barrier coatings with novel architectures for diesel engine applications[J]. Surface and Coatings Technology, 2020, 396: 125950. doi: 10.1016/j.surfcoat.2020.125950
    [94] 王睿哲, 朱丽娜, 岳文, 等. 激光表面织构化与固体润滑技术复合处理改善表面摩擦学性能的研究现状[J]. 材料保护, 2019, 52(10): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH201910023.htm

    WANG Rui-zhe, ZHU Li-na, YUE Wen, et al, Research status of compound treatment of laser surface texturing and solid lubrication technology to improve surface tribological properties[J]. Materials Protection, 2019, 52(10): 110-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH201910023.htm
    [95] CHO M R, CHOI J K, HAN D C. Calculation of mixed lubrication at piston ring and cylinder liner interface[J]. KSME International Journal, 2001, 15(7): 859-865. doi: 10.1007/BF03185264
    [96] PATIR N, CHENG H S. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication[J]. Journal of Lubrication Technology, 1978, 100(1): 12-17. doi: 10.1115/1.3453103
    [97] PATIR N, CHENG H S. Application of average flow model to lubrication between rough sliding surfaces[J]. Journal of Lubrication Technology, 1979, 121(2): 220-230.
    [98] GREENWOOD J A, TRIPP J H. The contact of two nominally flat rough surfaces[J]. Proceedings of the Institution of Mechanical Engineers, 1970, 185(1): 625-633. doi: 10.1243/PIME_PROC_1970_185_069_02
    [99] WILLIS E. Surface finish in relation to cylinder liners[J]. Wear, 1986, 109(1/2/3/4): 351-366.
    [100] RONEN A, ETSION I, KLIGERMAN Y. Friction-reducing surface-texturing in reciprocating automotive components[J]. Tribology Transactions, 2001, 44(3): 359-366. doi: 10.1080/10402000108982468
    [101] RYK G, KLIGERMAN Y, ETSION I. Experimental investigation of laser surface texturing for reciprocating automotive components[J]. Tribology Transactions, 2002, 45(4): 444-449. doi: 10.1080/10402000208982572
    [102] KLIGERMAN Y, ETSION I, SHINKARENKO A. Improving tribological performance of piston rings by partial surface texturing[J]. Journal of Tribology, 2005, 127(3): 632-638. doi: 10.1115/1.1866171
    [103] 符永宏, 张华伟, 纪敬虎, 等. 微造型活塞环表面的润滑性能数值分析[J]. 内燃机学报, 2009, 27(2): 180-185. doi: 10.3321/j.issn:1000-0909.2009.02.014

    FU Yong-hong, ZHANG Hua-wei, JI Jing-hu, et al. Numerical analysis on the lubrication performance of piston ring by surface micro-texturing[J]. Transactions of CSICE Engine, 2009, 27(2): 180-185. (in Chinese) doi: 10.3321/j.issn:1000-0909.2009.02.014
    [104] LIU Cheng, LYU Yan-jun, ZHANG Yong-fang, et al. Investigation on the frictional performance of surface textured ring-deformed liner conjunction in internal combustion engines[J]. Energies, 2019, 12(14): 2761. doi: 10.3390/en12142761
    [105] 胡天昌. 金属表面激光织构化设计及其摩擦学性能研究[D]. 北京: 中国科学院大学, 2012.

    HU Tian-chang. Study on fabrication and tribological properties of laser texturing on the metal surfaces[D]. Beijing: University of Chinese Academy of Sciences, 2012. (in Chinese)
    [106] ZHANG Ke-dong, DENG Jian-xin, GUO Xu-hong, et al. Study on the adhesion and tribological behavior of PVD TiAlN coatings with a multi-scale textured substrate surface[J]. International Journal of Refractory Metals and Hard Materials, 2018, 72: 292-305. doi: 10.1016/j.ijrmhm.2018.01.003
    [107] 万轶, 李建亮, 熊党生. 活塞环表面织构化镀层的摩擦性能研究[J]. 表面技术, 2018, 47(6): 195-201. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201806029.htm

    WAN Yi, LI Jian-liang, XIONG Dang-sheng. Tribological property of textured-coating on piston ring surface[J]. Surface Technology, 2018, 47(6): 195-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201806029.htm
    [108] LI Jian-liang, XIONG Dang-sheng, WU Hong-yan, et al. Tribological properties of laser surface texturing and molybdenizing duplex-treated Ni-base alloy[J]. Tribology Transactions, 2010, 53(2): 195-202. doi: 10.1080/10402000903097478
    [109] TAN Xu-guang, ZHANG Jian, XIONG Pei-you. Wear resistance mechanism of engine piston skirt coating under cold start condition[J]. Engineering Failure Analysis, 2020, 118: 104912. doi: 10.1016/j.engfailanal.2020.104912
    [110] MA Chun-sheng, LIU Jian, ZHU Xin-he, et al. Optimization of surface texture fabricated by three-step microarc oxidation for self-lubricating composite coating of diesel engine piston skirts[J]. Wear, 2021, 466/467: 203557. doi: 10.1016/j.wear.2020.203557
    [111] KOSZELA W, PAWLUS P, REIZER R, et al. The combined effect of surface texturing and DLC coating on the functional properties of internal combustion engines[J]. Tribology International, 2018, 127: 470-477. doi: 10.1016/j.triboint.2018.06.034
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  1183
  • HTML全文浏览量:  271
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-20
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回