留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轮轨系统的现状与展望

沈钢 毛鑫 毛文力 董强强 尹相琴

沈钢, 毛鑫, 毛文力, 董强强, 尹相琴. 轮轨系统的现状与展望[J]. 交通运输工程学报, 2022, 22(1): 42-57. doi: 10.19818/j.cnki.1671-1637.2022.01.003
引用本文: 沈钢, 毛鑫, 毛文力, 董强强, 尹相琴. 轮轨系统的现状与展望[J]. 交通运输工程学报, 2022, 22(1): 42-57. doi: 10.19818/j.cnki.1671-1637.2022.01.003
SHEN Gang, MAO Xin, MAO Wen-li, DONG Qiang-qiang, YIN Xiang-qin. Status and future trend of wheel/rail system[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 42-57. doi: 10.19818/j.cnki.1671-1637.2022.01.003
Citation: SHEN Gang, MAO Xin, MAO Wen-li, DONG Qiang-qiang, YIN Xiang-qin. Status and future trend of wheel/rail system[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 42-57. doi: 10.19818/j.cnki.1671-1637.2022.01.003

轮轨系统的现状与展望

doi: 10.19818/j.cnki.1671-1637.2022.01.003
基金项目: 

中国国家铁路集团有限公司重大项目 2017G003-A

“十二五”国家科技支撑计划项目 2015BAG19B02

详细信息
    作者简介:

    沈钢(1963-),男,浙江余姚人,同济大学教授,工学博士,从事轨道车辆动力学研究

  • 中图分类号: U270.1

Status and future trend of wheel/rail system

Funds: 

Major Projects of China National Railway Corporation 2017G003-A

"12th Five Year Plan" National Science and Technology Support Plan Project 2015BAG19B02

More Information
  • 摘要: 总结了现有传统钢轮钢轨式轮轨系统的工程问题、研究现状和工程处理方法; 分析了钢轨波磨和车轮不圆的形成和发展机理,对困扰高铁的踏面凹磨问题提出了创新性治理设想; 拟通过轮轨系统的廓形设计-磨损评价-磨损治理的系统化革新思路,获得既安全又经济的线路条件个性最优化方案; 总结和展望了目前轮轨系统的打磨和镟轮,讨论了轮轨系统的检测方法; 提出了避免过度检测的新思路,并预测了轮轨系统的未来发展前景。分析结果表明:钢轨波磨和车轮失圆的机理都出于轮轨系统的参激振动与切向轮轨磨损的耦合,在交变正压力和切向磨损同相位作用下,使凸起区域的磨损低于凹下区域的磨损; 高铁的凹磨问题是轮轨在高速直线上和超大半径曲线上,轮轨处于非常微小的横向扰动,又在非常平顺的线路下发生镶嵌磨损,即轮轨接触部分廓形发生相互拷贝式磨损; 低速城轨系统轮缘侧面磨损是由于在较小曲线半径上运行时,在较大的横向蠕滑作用下引起轮缘的导向作用而为,其踏面不易发生凹磨; 钢轨和道岔的各种病害与轴重和冲击载荷有关,其疲劳破坏以局部应力过大下的低周疲劳为主; 随着车辆速度和轴重的提高,轮轨系统仅在车辆侧和轨道侧进行优化已达到极限,只有相互联合优化才能深入发掘潜力,继续维持轮轨交通的应用价值。

     

  • 图  1  磨耗型波磨的波长锁定机制示意

    Figure  1.  Illustration of wavelength locking mechanism of wear type corrugation

    图  2  测点4处9号道岔导曲线入口处波磨

    Figure  2.  Measured corrugation of No 4 on turnout 9

    图  3  波磨测试方案平面布置

    Figure  3.  Layout of test measurements of corrugation

    图  4  无波磨处直线上的横向振动加速度频谱

    Figure  4.  Spectrum of lateral acceleration on tangent track without corrugation

    图  5  曲线上有波磨处的横向振动加速度频谱(曲线测点1)

    Figure  5.  Spectrum of lateral acceleration at point 1 on curved track with corrugation

    图  6  曲线上有波磨处的横向振动加速度频谱(曲线测点2)

    Figure  6.  Spectrum of lateral acceleration at point 2 on curved track with corrugation

    图  7  有局部不圆顺的车轮

    Figure  7.  Wheel with polygon shape

    图  8  轮轨正压力和蠕滑力的关系

    Figure  8.  Contact and creep forces

    图  9  测量剖面

    Figure  9.  Measured profile

    图  10  粗糙度分析结果

    Figure  10.  Roughness analysis result

    图  11  轮轨接触法向力变化

    Figure  11.  Wheel/rail contact force around

    图  12  蠕滑率变化

    Figure  12.  Creep force around

    图  13  磨耗功率变化

    Figure  13.  Friction work around

    图  14  车轮失圆外形的变化历程仿真结果

    Figure  14.  Simulation results of variation of wheel unroundness

    表  1  轮轨系统存在问题分类

    Table  1.   Classification of existing troubles of wheel/rail system

    问题分类 问题描述
    固有问题 轮对元件与轨道的匹配问题
    转向架与曲线运行不匹配问题
    车辆的连挂组成列车问题
    走行机构的多样化问题
    车轮侧伤损引发的问题 踏面沟状磨耗、轮缘磨耗、踏面剥离、踏面凹磨、踏面局部分离、踏面内裂纹、踏面表面粗糙、踏面擦伤、车轮失圆、车轮高阶多边形、轴承故障等
    钢轨侧伤损引发的问题 轨顶塌陷、低接头塌陷、曲线外轨侧磨、轨头核伤、轨顶疲劳起皮、轨顶塑留、轨角侧疲劳掉块、钢轨短波磨、钢轨极短波磨、钢轨长波磨、轨角塑流波磨、钢轨交替侧磨、纵向裂纹扩展、外轨内侧塑性掉边、轨角塑性掉边、工作面肥边、轨角鱼鳞纹、轨角剥离脱落、垂直轨裂、纵向轨裂、轨下鄂核伤、尖轨裂纹、辙岔芯轨磨耗、接头错差、辙岔翼轨肥边、护轨磨耗、道岔波磨
    下载: 导出CSV

    表  2  轮踏面上的各种问题和部分成因及可行措施

    Table  2.   Various defects and some mechanism of tread and possible treatments

    磨损问题与图片 特征成因 措施 磨损问题与图片 特征成因 措施
    一条或多条下凹带状磨耗,制动过度; 闸瓦材质不均 达到一定深度时旋轮 轮缘厚度磨耗大于踏面垂直磨耗; 曲线半径较小; 转向架导向不足; 轮缘欠润滑 采用经济旋模板旋轮; 优化转向架定位刚度等
    踏面部与钢轨顶部廓形接近,运行稳定产生集中磨耗于滚动圆附近 旋轮或其他措施减少集中磨耗 表面因浅层疲劳而掉块; 浅层疲劳反复碾压 及时旋轮
    整块脱落,内部裂纹扩展 及时探伤及旋轮 探伤时发现踏面内部缺陷,旋轮后发现内部裂纹扩展; 应力过于集中导致内部裂纹扩展 修正踏面外形; 减小应力集中; 及时旋轮
    表面粗糙有碾压颗粒; 钢轨表面状态不佳,导致轮轨接触应力不均 打磨钢轨 圆周接触面上有明显局部伤痕; 制动力过大; 轮轨黏着过小 检查防空高转抱死系统
    测量结果呈现不规则状态,粗糙度大于20 dB; 制动不均,车轨耦合振动导致不均匀磨耗 旋轮,优化轮轨系统,有条件时施加踏面制动 滚动圆测量结果呈现规则多边形,高阶粗糙度大于20 dB re 1 um; 轮轨耦合高频振动 旋轮,采用踏面随车光滑器
    下载: 导出CSV

    表  3  钢轨表面的各种问题和部分成因及可行措施

    Table  3.   Various defects and some mechanism of rail surface and possible treatments

    磨损问题和图片 特征成因 措施 磨损问题和图片 特征成因 措施
    轨顶局部凹陷; 车轮空转,局部意外冲击,钢轨材质 及时修复 钢轨接头处出现塌陷; 冲击振动 加强接头区刚度
    外侧面严重磨损,趋向车轮轮缘外形; 曲线半径较小,润滑不足 间隔地润滑侧面 轨角呈现有一定角度的裂纹; 轮轨处于轨角接触区,应力和切向蠕滑均较大 打磨
    轨顶浅层疲劳并剥离; 轮轨长期过载碾压,垂直磨耗低 打磨 轮轨横向蠕滑力过大; 钢轨材质问题,接触切向力过大 打磨
    轨角处发生异常疲劳剥离; 轮轨接触点应力过大,轮轨廓形不良 打磨,校正钢轨廓形 轨顶面出现周期性下凹区,波长固定; 波磨生成条件具备时发生 及时打磨或轨顶摩擦控制
    轨顶面出现周期性下凹区,波长固定; 波磨生成条件具备时发生 及时打磨或轨顶摩擦控制 轨顶面出现周期性下凹区,波长固定; 波磨生成条件具备时发生 及时打磨
    轨角区出现周期性上凸区,波长固定; 轮轨碾压塑性流动 及时打磨 直线或大半径曲线轨道上发生间隔性侧面磨耗,波长为30~50 m; 钢轨廓形异常激发列车低频运动; 缓和曲线激励 控制打磨纵向横断面的一致性
    下载: 导出CSV

    表  4  钢轨内部各种疲劳问题和部分成因及可行措施

    Table  4.   Various rail internal fatigue and some mechanism and possible treatments

    磨损问题和图片 特征成因 措施 磨损问题和图片 特征成因 措施
    轮轨接触应力过大,反复碾压导致; 垂直磨耗小,疲劳裂纹扩展 及时探伤打磨 轨下颚出现内部裂纹并扩展; 横向力协同作用使轨下颚处应力最大 更换钢轨
    内部裂纹扩展; 轮轨接触应力大 及时探伤更换 轨角处疲劳扩展区发生掉块; 鱼鳞裂纹后反复碾压导致金属剥离 检查裂纹是否向内发展,有则需要更换钢轨
    垂向裂纹扩展并断裂; 轮轨垂横向作用过大,疲劳扩展 及时检查更换钢轨 钢轨焊接区出现垂向裂纹向纵向发展直至断裂; 焊接区应力问题引起疲劳裂纹扩展 更换钢轨
    辙岔芯轨顶部至顶宽30 mm以下; 因几何尺寸或者接头错差等 调整几何尺寸,轻度损害打磨,中度焊补与重度更换联合 尖轨尖端至顶宽30 mm以下; 较大冲击; 工作边未倒角; 过度打磨 联合通号专业调整几何尺寸,再对该处进行打磨处理与倒角打磨
    道岔区段钢轨顶面波浪形磨耗 钢轨打磨 接头错差(死缝) 平侧面与顶面平直度差异,侧面或顶面形成1 mm以上的成为错差; 因扣件扣压力不足导致钢轨爬移产生 用钢轨拉伸器来调整
    辙岔翼轨作用边一侧钢轨顶面扩宽; 不良受力导致的钢轨表面金属塑性流动与堆积 打磨 护轨上的一种侧向磨耗; 几何尺寸(尤其是查照间隔、护背距离、护轨与基本轨距离)不良导致 调整几何尺寸,打磨
    下载: 导出CSV

    表  5  道岔区各种问题和部分成因及可行措施

    Table  5.   Various turnout zone defects and some mechanism and possible treatments

    磨损问题及图片 特征成因 措施 磨损问题及图片 特征成因 措施
    辙岔芯轨顶部至顶宽30 mm以下; 因几何尺寸或接头错差等 调整几何尺寸,轻度损害打磨,中度焊补,重度更换联合 尖轨尖端至顶宽30 mm以下; 较大冲击; 工作边未倒角; 过度打磨 联合通号专业调整几何尺寸,再对该处进行打磨处理与倒角打磨
    道岔区段钢轨顶面波浪形磨耗 钢轨打磨 接头错差(死缝) 平侧面与顶面平直度差异,侧面或顶面形成1 mm以上的成为错差; 因扣件扣压力不足导致钢轨爬移产生 用钢轨拉伸器来调整
    辙岔翼轨作用边一侧钢轨顶面扩宽; 不良受力导致钢轨表面金属塑性流动与堆积 打磨 护轨上的一种侧向磨耗; 几何尺寸(尤其是查照间隔、护背距离、护轨与基本轨距离)不良导致 调整几何尺寸,打磨
    下载: 导出CSV

    表  6  钢轨材质塑性流动问题和部分成因及可行措施

    Table  6.   Various rail surface plastic deformation and some mechanism and possible treatments

    磨损问题和图片 特征成因 措施 磨损问题和图片 特征成因 措施
    工作边塑性纵向条状剥离; 轮轨接触不良 及时廓形打磨 外轨侧面下部塑性流动并脱落; 轮轨横向作用力过大 及时打磨
    轨距拉杆的局部受力过大引起轨底局部塑性边形和横向裂纹 局部更换 顶面明显塑性流动挤出金属材料; 轮轨垂向作用力过大 打磨
    下载: 导出CSV

    表  7  某地铁线路上测量的波磨关键特征

    Table  7.   Basic features of rail corrugation measured on a metro line

    测量点序号 测量轨道特征 波长/mm 平均波深/mm
    1 400 m半径曲线 200 0.70
    2 400 m半径曲线 200 0.50
    3 400 m半径曲线 160~200 0.20
    4 9号道岔导曲线 100~120 0.30
    5 9号道岔导曲线 70~80 0.80
    6 400 m半径曲线 160~220 0.20
    7 400 m半径曲线 150~160 0.10
    8 400 m半径曲线 100~120 0.15
    9 400 m半径曲线 100 0.10
    下载: 导出CSV
  • [1] 沈钢, 钟晓波. 铁路车轮踏面外形的逆向设计方法[J]. 机械工程学报, 2010, 46(16): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201016009.htm

    SHEN Gang, ZHONG Xiao-bo, Inverse method for design of wheel profiles for railway vehicles[J]. Journal of Mechanical Engineering, 2010, 46(16): 41-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201016009.htm
    [2] 毛鑫, 沈钢. 基于轮径差函数的曲线钢轨打磨廓形设计[J]. 同济大学学报(自然科学版), 2018, 46(2): 253-259. doi: 10.11908/j.issn.0253-374x.2018.02.017

    MAO Xin, SHEN Gang. Curved rail grinding profile design based on rolling radii difference function[J]. Journal of Tongji University (Natural Science), 2018, 46(2): 253-259. (in Chinese) doi: 10.11908/j.issn.0253-374x.2018.02.017
    [3] 周清跃, 刘丰收, 张银花, 等. 高速铁路轮轨匹配存在问题及对策[J]. 中国铁道科学, 2017, 38(5): 78-84. doi: 10.3969/j.issn.1001-4632.2017.05.11

    ZHOU Qing-yue, LIU Feng-shou, ZHANG Yin-hua, et al. Solutions for problems at wheel-rail interface in high speed railway[J]. China Railway Science, 2017, 38(5): 78-84. (in Chinese) doi: 10.3969/j.issn.1001-4632.2017.05.11
    [4] 王令朝. 轮轨润滑技术及应用分析[J]. 现代城市轨道交通, 2020(5): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD202005022.htm

    WANG Ling-chao. Wheel rail lubrication technology and application analysis[J]. Modern Urban Transit, 2020(5): 92-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD202005022.htm
    [5] TEMPLE P D, HARMON M. LEWIS R, et al. Optimisation of grease application to railway tracks[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(5): 1514-1527. doi: 10.1177/0954409717734681
    [6] 黄立, 曾京, 李大地, 等. 高速动车组晃车现象的主动控制[J]. 机械, 2019, 46(9): 7-10, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-MECH201909003.htm

    HUANG Li, ZENG Jing, LI Da-di, et al. Active control for coach shaking of high-speed EMU[J]. Machinery, 2019, 46(9): 7-10, 69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MECH201909003.htm
    [7] UYULAN C, GOKASAN M, SETA BOGOSYAN S. Hunting stability and derailment analysis of the high-speed railway vehicle moving on curved tracks[J]. International Journal of Heavy Vehicle Systems, 2019, 26(6): 824-853. doi: 10.1504/IJHVS.2019.102685
    [8] WANG Shu-shu, SHEN Xiao-meng, TU Xiao-jian. A novel energy-harvesting active radial bogie for railway vehicles: design, simulation and HIL test[J]. Applied Mechanics and Materials, 2015, 733: 695-698. doi: 10.4028/www.scientific.net/AMM.733.695
    [9] MATSUMOTO A, SATO Y, OHNO H, et al. Curving performance evaluation for active-bogie-steering bogie with multibody dynamics simulation and experiment on test stand[J]. Vehicle System Dynamics, 2008, 46(S1): 191-199.
    [10] 罗湘萍, 田师峤. 主副构架铰接的主动径向转向架曲线通过性能研究[J]. 城市轨道交通研究, 2016, 19(12): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201612003.htm

    LUO Xiang-ping, TIAN Shi-qiao. Curving performance of active radial bogie with main frame and sub-frame[J]. Urban Mass Transit, 2016, 19(12): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201612003.htm
    [11] DI GIALLEONARDO E, CAZZULANI G, STEFANO MELZI S, et al. The effect of train composition on the running safety of low-flatcar wagons in braking and curving manoeuvres[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(6): 666-677. doi: 10.1177/0954409716636923
    [12] 尧辉明, 沈钢, 高利君. 基于试验验证的磨耗型钢轨波磨形成机理[J]. 同济大学学报(自然科学版), 2018, 46(10): 1427-1432. doi: 10.11908/j.issn.0253-374x.2018.10.015

    YAO Hui-ming, SHEN Gang, GAO Li-jun. Formation mechanism of worn profile rail corrugation based on experimental verification[J]. Journal of Tongji University (Natural Science), 2018, 46(10): 1427-1432. (in Chinese) doi: 10.11908/j.issn.0253-374x.2018.10.015
    [13] GRASSIE S L, KALOUSEK J. Rail corrugation: characteristics, causes and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(6): 581-596. doi: 10.1243/09544097JRRT264
    [14] DANG VAN K D, MAITOURNAM M H, MOUMNI Z, et al. A comprehensive approach for modeling fatigue and fracture of rails[J]. Engineering Fracture Mechanics, 2009, 76(17): 2626-2636. doi: 10.1016/j.engfracmech.2008.12.020
    [15] 钟晓波, 沈钢. 高速列车车轮踏面外形优化设计[J]. 同济大学学报(自然科学版), 2011, 39(5): 710-715. doi: 10.3969/j.issn.0253-374x.2011.05.015

    ZHONG Xiao-bo, SHEN Gang. Optimization for high-speed wheel profiles[J]. Journal of Tongji University (Natural Science), 2011, 39(5): 710-715. (in Chinese) doi: 10.3969/j.issn.0253-374x.2011.05.015
    [16] SHEN Gang, ZHONG Xiao-bo. A design method for wheel profiles according to the rolling radius difference function[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2011, 225(5): 457-462. doi: 10.1177/2041301710394920
    [17] 沈钢, 钟晓波. 铁路车轮踏面外形的逆向设计方法[J]. 机械工程学报, 2010, 46(16): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201016009.htm

    SHEN Gang, ZHONG Xiao-bo. Inverse method for design of wheel profiles for railway vehicles[J]. Journal of Mechanical Engineering, 2010, 46(16): 41-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201016009.htm
    [18] 叶志森, 沈钢. 独立轮踏面外形的设计[J]. 铁道车辆, 2003, 41(1): 19-21. doi: 10.3969/j.issn.1002-7602.2003.01.006

    YE Zhi-sen, SHEN Gang. Design of independently rotating wheel tread shape[J]. Journal of Rolling Stock, 2003, 41(1): 19-21. (in Chinese) doi: 10.3969/j.issn.1002-7602.2003.01.006
    [19] MAO Xin, SHEN Gang. A design method for rail profiles based on the geometric characteristics of wheel-rail contact[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(5): 1255-1265. doi: 10.1177/0954409717720346
    [20] MAO Xin, SHEN Gang. An inverse design method for rail grinding profiles[J]. Vehicle System Dynamics, 2017, 55(7): 1029-1044. doi: 10.1080/00423114.2017.1296168
    [21] 徐凯, 李芾, 李东宇, 等. 动车组的轮轨型面匹配关系[J]. 西南交通大学学报, 2017, 52(2): 389-399. doi: 10.3969/j.issn.0258-2724.2017.02.024

    XU Kai, LI Fu, LI Dong-yu, et al. Wheel-rail profile matching relationship of EMU train[J]. Journal of Southwest Jiaotong University, 2017, 52(2): 389-399. (in Chinese) doi: 10.3969/j.issn.0258-2724.2017.02.024
    [22] SAWLEY K, WU Hui-min. The formation of hollow-worn wheels and their effect on wheel/rail interaction[J]. Wear, 2005, 258(7/8): 1179-1186.
    [23] 张斌, 付秀琴. 铁路车轮、轮箍踏面剥离的类型及形成机理[J]. 中国铁道科学, 2001, 22(2): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200102010.htm

    ZHANG Bin, FU Xiu-qin. Type and formation mechanism of railway wheel and tire tread spall[J]. China Railway Science, 2001, 22(2): 76-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200102010.htm
    [24] ZHAO Xin, WEN Ze-feng, ZHU Min-hao, et al. A study on high-speed rolling contact between a wheel and a contaminated rail[J]. Vehicle System Dynamics, 2014, 52(10): 1270-1287. doi: 10.1080/00423114.2014.934845
    [25] 张洪. 准高速客车转向架轮缘磨耗原因及改进措施[J]. 铁道车辆, 2000, 38(5): 8-11, 1. doi: 10.3969/j.issn.1002-7602.2000.05.003

    ZHANG Hong. Causes to the wheel flange wear on quasi-high speed passenger car bogies and the improvement measures[J]. Journal of Rolling Stock, 2000, 38(5): 8-11, 1. (in Chinese) doi: 10.3969/j.issn.1002-7602.2000.05.003
    [26] XIAO Qian, LUO Zhi-xiang, XU Xu, et al. Research on influence of harmonic wear wheel on wheel/rail contact geometry of high-speed train[J]. Journal of Mechanical Science and Technology, 2019, 33(2): 537-544. doi: 10.1007/s12206-019-0107-6
    [27] JENDEL T. Prediction of wheel profile wear—comparisons with field measurements[J]. Wear, 2002, 253(1/2): 89-99.
    [28] 周宇, 张杰, 王少锋, 等. 考虑磨耗的钢轨疲劳裂纹萌生寿命预测仿真[J]. 铁道学报, 2016, 38(7): 91-97. doi: 10.3969/j.issn.1001-8360.2016.07.013

    ZHOU Yu, ZHANG Jie, WANG Shao-feng, et al. Simulation on rail head crack Initiation life prediction considering rail wear[J]. Journal of the China Railway Society, 2016, 38(7): 91-97. (in Chinese) doi: 10.3969/j.issn.1001-8360.2016.07.013
    [29] 周清跃, 张建峰, 郭战伟, 等. 重载铁路钢轨的伤损及预防对策研究[J]. 中国铁道科学, 2010, 31(1): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201001007.htm

    ZHOU Qing-yue, ZHANG Jian-feng, GUO Zhan-wei, et al. Research on the rail damages and the preventive countermeasures in heavy haul railways[J]. China Railway Science, 2010, 31(1): 27-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201001007.htm
    [30] CANNON D F, EDEL K O, GRASSIE S, et al. Rail defects: an overview[J]. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26(10): 865-886. doi: 10.1046/j.1460-2695.2003.00693.x
    [31] YOU R L, GOTO K. NGAMKHANONG C, et al. Nonlinear finite element analysis for structural capacity of railway prestressed concrete sleepers with rail seat abrasion[J]. Engineering Failure Analysis, 2019, 95: 47-65. doi: 10.1016/j.engfailanal.2018.08.026
    [32] 董孝卿, 朱韶光, 钱卿, 等. LMD车轮外形的直径旋修量影响因素及对应措施研究[J]. 铁道机车车辆, 2017, 37(5): 12-16. doi: 10.3969/j.issn.1008-7842.2017.05.03

    DONG Xiao-qing, ZHU Shao-guang, QIAN Qing, et al. Analysis of reprofiling strategy for the LMD wheel tread profile[J]. Railway Locomotive and Car, 2017, 37(5): 12-16. (in Chinese) doi: 10.3969/j.issn.1008-7842.2017.05.03
    [33] 龚继军, 郭猛刚, 侯博, 等. 钢轨打磨技术发展现状及打磨策略探讨[J]. 机车电传动, 2020(3): 23-29, 34. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202003006.htm

    GONG Ji-jun, GUO Meng-gang, HOU Bo, et al. Discussion on rail grinding technology development situation and grind strategies[J]. Electric Drive for Locomotives, 2020(3): 23-29, 34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202003006.htm
    [34] 刘彦军, 杨涛存, 武威, 等. 基于大数据技术的高铁运营安全规律分析系统设计与应用[J]. 中国铁路, 2020(9): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202009005.htm

    LIU Yan-jun, YANG Tao-cun, WU Wei, et al. Design and application of safety rules analysis system for high speed railway operation based on big data technology[J]. China Railway, 2020(9): 28-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202009005.htm
    [35] 张振先, 谭江, 黄双超, 等. 复杂运行环境下高速轮轨最佳撒砂增黏策略试验[J]. 中国铁道科学, 2020, 41(2): 123-130. doi: 10.3969/j.issn.1001-4632.2020.02.15

    ZHANG Zhen-xian, TAN Jiang, HUANG Shuang-chao, et al. Experimental study on optimum sanding and adhesion enhancement strategy for high speed wheel and rail under complicated operation environments[J]. China Railway Science, 2020, 41(2): 123-130. (in Chinese) doi: 10.3969/j.issn.1001-4632.2020.02.15
    [36] 吴兵, 温泽峰, 王衡禹, 等. 高速轮轨黏着特性影响因素研究[J]. 铁道学报, 2013, 35(3): 18-22. doi: 10.3969/j.issn.1001-8360.2013.03.003

    WU Bing, WEN Ze-feng, WANG Heng-yu, et al. Study on factors affecting high-speed wheel-rail adhesion characteristics[J]. Journal of the China Railway Society, 2013, 35(3): 18-22. (in Chinese) doi: 10.3969/j.issn.1001-8360.2013.03.003
    [37] WANG Sheng-chun, LUO Si-wei, HUANG Ya-ping, et al. Railroad online: acquiring and visualizing route panoramas of rail scenes[J]. The Visual Computer, 2014, 30(9): 1045-1057. doi: 10.1007/s00371-013-0911-4
    [38] 邹文俊. 钢轨打磨技术及磨具研究进展[J]. 金刚石与磨料磨具工程, 2020, 40(2): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM202002001.htm

    ZOU Wen-jun. Research progress of rail grinding technology and abrasives[J]. Diamond and Abrasives Engineering, 2020, 40(2): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGSM202002001.htm
    [39] WANG Meng-Jie, WANG Xi-fu, ZHANG Wen-ying, et al. Research on the special railway intelligence transportation hierarchy and system integration methodology[J]. Sensors and Transducers, 2013, 152(5): 89-97.
    [40] 谢佳奇, 朱家诚, 魏俊杰, 等. 铁路牵引变电所智能巡检机器人的研制[J]. 机床与液压, 2020, 48(15): 12-16. doi: 10.3969/j.issn.1001-3881.2020.15.003

    XIE Jia-qi, ZHU Jia-cheng, WEI Jun-jie, et al. Development of intelligent inspection robot for railway traction substation[J]. Machine Tool and Hydraulics, 2020, 48(15): 12-16. (in Chinese) doi: 10.3969/j.issn.1001-3881.2020.15.003
    [41] YANG Yun-fan, LING Liang, WANG Chao, et al. Wheel/rail dynamic interaction induced by polygonal wear of locomotive wheels[J]. Vehicle System Dynamics, 2022, 60(1): 211-235. doi: 10.1080/00423114.2020.1807572
    [42] LEE H W. Generation of airborne wear particles from the wheel-rail contact under wet conditions using a twin-disk rig[J]. Wear, 2020, 448/449: 203236. doi: 10.1016/j.wear.2020.203236
    [43] SUN Qi, CHEN Chun-jun, KEMP A H, et al. An on-board detection framework for polygon wear of railway wheel based on vibration acceleration of axle-box[J]. Mechanical Systems and Signal Processing, 2021, 153: 107540. doi: 10.1016/j.ymssp.2020.107540
    [44] SONG Ying, SUN B C. Recognition of wheel polygon based on W/R force measurement by piezoelectric sensors in GSM-R network[J]. Wireless Personal Communications, 2018, 102(2): 1283-1291. doi: 10.1007/s11277-017-5194-z
    [45] PENG Bo, IWNICKI S, SHACKLETON P, et al. Comparison of wear models for simulation of railway wheel polygonization[J]. Wear, 2019, 436/437: 203010. doi: 10.1016/j.wear.2019.203010
    [46] CHI Zhe-xiang, LIN Jing, CHEN Ruo-ran, et al. Data-driven approach to study the polygonization of high-speed railway train wheel-sets using field data of China's HSR train[J]. Measurement, 2020, 149: 107022. doi: 10.1016/j.measurement.2019.107022
    [47] PENG Bo, IWNICKI S, SHACKLETON P, et al. General conditions for railway wheel polygonal wear to evolve[J]. Vehicle System Dynamics, 2021, 59(4): 568-587. doi: 10.1080/00423114.2019.1697458
    [48] WANG Jian, LUO Long-fu, YE Wei, et al. A defect-detection method of split pins in the catenary fastening devices of high-speed railway based on deep learning[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12): 9517-9525. doi: 10.1109/TIM.2020.3006324
    [49] ALAWAD H, KAEWUNRUEN S. AN Min. A deep learning approach towards railway safety risk assessment[J]. IEEE Access, 2020, 8: 102811-102832. doi: 10.1109/ACCESS.2020.2997946
    [50] WEI Xiu-kun, YANG Zi-ming, LIU Yu-xin, et al. Railway track fastener defect detection based on image processing and deep learning techniques: a comparative study[J]. Engineering Applications of Artificial Intelligence, 2019, 80: 66-81. doi: 10.1016/j.engappai.2019.01.008
    [51] MA Shuai, GAO Liang, LIU Xiu-bo, et al. Deep learning for track quality evaluation of high-speed railway based on vehicle-body vibration prediction[J]. IEEE Access, 2019, 7: 185099-185107. doi: 10.1109/ACCESS.2019.2960537
    [52] PING Huang, WEN Chao, FU Li-ping, et al. A deep learning approach for multi-attribute data: a study of train delay prediction in railway systems[J]. Information Sciences, 2020, 516: 234-253. doi: 10.1016/j.ins.2019.12.053
    [53] RAGEH A, EFTEKHAR AZAM S, LINZELL D G. Steel railway bridge fatigue damage detection using numerical models and machine learning: mitigating influence of modeling uncertainty[J]. International Journal of Fatigue, 2020, 134: 105458. doi: 10.1016/j.ijfatigue.2019.105458
    [54] HUANG Xiao-ya, WANG Hao, XUE Wei-hua, et al. Study on time-temperature-transformation diagrams of stainless steel using machine-learning approach[J]. Computational Materials Science, 2020, 171: 109282. doi: 10.1016/j.commatsci.2019.109282
    [55] NADARAJAH N, SHAMDANI A, HARDIE G, et al. Prediction of railway vehicles' dynamic behavior with machine learning algorithms[J]. Electronic Journal of Structural Engineering, 2018, 18(1): 38-46.
    [56] GROSSONI I, HUGHES P, BEZIN Y, et al. Observed failures at railway turnouts: failure analysis, possible causes and links to current and future research[J]. Engineering Failure Analysis, 2021, 119: 104987. doi: 10.1016/j.engfailanal.2020.104987
    [57] JING Guo-qing, SIAHKOUHI M, EDWARDS J R, et al. Smart railway sleepers—a review of recent developments, challenges, and future prospects[J]. Construction and Building Materials, 2021, 271: 121533.
    [58] SERRANO-JIMÉNEZ D, ABRAHAMSSON L, CASTAÑO-SOLÍS S, et al. Electrical railway power supply systems: current situation and future trends[J]. International Journal of Electrical Power and Energy Systems, 2017, 92: 181-192.
    [59] VAGNOLI M, REMENYTE-PRESCOTT R, ANDREWS J. Railway bridge structural health monitoring and fault detection: state-of-the-art methods and future challenges[J]. Structural Health Monitoring, 2018, 17(4): 971-1007.
    [60] ROTHBAUM D. 5G for the future railway mobile communication system[J]. ITU News, 2019, 2019(4): 49-52.
  • 加载中
图(14) / 表(7)
计量
  • 文章访问数:  1713
  • HTML全文浏览量:  540
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-10
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回