留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢管混凝土提篮拱面外受力性能试验

韦建刚 谢志涛 杨艳 吴庆雄 陈宝春 平建春

韦建刚, 谢志涛, 杨艳, 吴庆雄, 陈宝春, 平建春. 钢管混凝土提篮拱面外受力性能试验[J]. 交通运输工程学报, 2022, 22(1): 58-69. doi: 10.19818/j.cnki.1671-1637.2022.01.004
引用本文: 韦建刚, 谢志涛, 杨艳, 吴庆雄, 陈宝春, 平建春. 钢管混凝土提篮拱面外受力性能试验[J]. 交通运输工程学报, 2022, 22(1): 58-69. doi: 10.19818/j.cnki.1671-1637.2022.01.004
WEI Jian-gang, XIE Zhi-tao, YANG Yan, WU Qing-xiong, CHEN Bao-chun, PING Jian-chun. Experiment on out-of-plan mechanical behavior of CFST X-type arches[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 58-69. doi: 10.19818/j.cnki.1671-1637.2022.01.004
Citation: WEI Jian-gang, XIE Zhi-tao, YANG Yan, WU Qing-xiong, CHEN Bao-chun, PING Jian-chun. Experiment on out-of-plan mechanical behavior of CFST X-type arches[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 58-69. doi: 10.19818/j.cnki.1671-1637.2022.01.004

钢管混凝土提篮拱面外受力性能试验

doi: 10.19818/j.cnki.1671-1637.2022.01.004
基金项目: 

国家自然科学基金项目 51878172

详细信息
    作者简介:

    韦建刚(1971-),男,广西上思人,福州大学研究员,工学博士,从事拱桥计算理论、新型组合结构、大跨度桥梁稳定性能等研究

    通讯作者:

    杨艳(1979-),女,福建邵武人,福州大学副研究员,工学博士

  • 中图分类号: U441.4

Experiment on out-of-plan mechanical behavior of CFST X-type arches

Funds: 

National Natural Science Foundation of China 51878172

More Information
  • 摘要: 为探究非保向力效应对钢管混凝土提篮拱桥平面外稳定性能的影响,开展了钢管混凝土(CFST)提篮拱空间受力性能试验和有限元分析; 基于某原型桥开展了考虑吊杆影响的钢管混凝土提篮拱空间受力性能试验,揭示了模型拱的破坏机理; 基于试验结果和实际工程构造参数建立了钢管混凝土标准提篮拱桥有限元模型,通过是否建立杆系吊杆的方式分别考虑吊杆的非保向力和保向力作用,分析了拱肋倾角、矢跨比、宽跨比等参数变化对是否考虑吊杆非保向力效应的钢管混凝土提篮拱面外极限承载力的影响; 基于材料与几何双重非线性有限元模型,以荷载比和位移比定量分析了不同参数下非保向力效应对拱肋空间受力性能的提高程度。研究结果表明:在空间受力过程中钢管混凝土提篮拱位移均关于拱顶截面呈对称分布,应变分布也具有良好的对称性,说明模型拱在空间受力过程中整体稳定性较好,且具有较低的初始几何缺陷敏感度; 模型拱最终发生面外极值点失稳破坏,拱肋以承受压力和面外弯矩为主,其中面外弯矩是模型拱稳定极限承载力的主要控制因素; 钢管混凝土提篮拱面外极限承载力均随拱肋倾角、矢跨比和宽跨比的增大呈先增大后减小的趋势,在拱肋倾角为9°,矢跨比为0.25,宽跨比为0.03时承载力均达到最大值; 在计算钢管混凝土提篮拱面外极限承载力时应考虑非保向力效应,否则计算结果将偏小22%。

     

  • 图  1  试验模型示意

    Figure  1.  Schematic of model test

    图  2  横向加载装置

    Figure  2.  Lateral loading device

    图  3  竖向加载装置

    Figure  3.  Vertical loading device

    图  4  拱肋截面应变测点布置

    Figure  4.  Strain measuring points arrangement of arch rib section

    图  5  吊杆张拉阶段拱肋跨径-竖向位移曲线

    Figure  5.  Arch rib span-vertical displacement curves during hanger tensioning

    图  6  水平力加载阶段拱肋跨径-横向位移曲线

    Figure  6.  Arch rib span-lateral displacement curves during horizontal loading

    图  7  吊杆张拉阶段吊杆张拉力-拱肋竖向位移曲线

    Figure  7.  Hanger tensioning force-arch rib vertical displacement curves during hanger tensioning

    图  8  水平力加载阶段拱顶水平力-拱肋竖向位移曲线

    Figure  8.  Arch roof horizontal force-arch rib vertical displacement curves during horizontal loading

    图  9  水平力加载阶段拱顶水平力-拱肋横向位移曲线

    Figure  9.  Arch roof horizontal force-arch rib lateral displacement curves during horizontal loading

    图  10  吊杆张拉阶段拱肋上下缘应变

    Figure  10.  Strains of upper and lower edges of arch rib during hanger tensioning

    图  11  吊杆张拉阶段拱肋上钢管前后缘应变

    Figure  11.  Strains of front and rear edges of upper steel tube of arch rib during hanger tensioning

    图  12  水平力加载阶段加载侧拱肋上下缘应变

    Figure  12.  Strains of upper and lower edges of loading side arch rib during horizontal loading

    图  13  水平力加载阶段非加载侧拱肋上下缘应变

    Figure  13.  Strains of upper and lower edges of unloading side arch rib during horizontal loading

    图  14  水平力加载阶段加载侧拱肋上钢管前后缘应变

    Figure  14.  Strains of front and rear edges of upper steel tube of loading side arch rib during horizontal loading

    图  15  水平力加载阶段非加载侧拱肋上钢管前后缘应变

    Figure  15.  Strains of front and rear edges of upper steel tube of unloading side arch rib during horizontal loading

    图  16  水平力加载阶段加载侧拱肋下钢管前后缘应变

    Figure  16.  Strains of front and rear edges of lower steel tube of loading side arch rib during horizontal loading

    图  17  水平力加载阶段非加载侧拱肋下钢管前后缘应变

    Figure  17.  Strains of front and rear edges of lower steel tube of unloading side arch rib during horizontal loading

    图  18  拱顶水平力-拱肋竖向位移曲线有限元与试验结果对比

    Figure  18.  Comparison of finite element and experimental results of arch roof horizontal force-arch rib displacement curves

    图  19  不同拱肋倾角下拱的面外极限承载力

    Figure  19.  Out-of-plane ultimate bearing capacities of arches under different arch rib inclinations

    图  20  不同矢跨比下拱的面外极限承载力

    Figure  20.  Out-of-plane ultimate bearing capacities of arches under different rise-span ratios

    图  21  不同宽跨比下拱的极限承载力

    Figure  21.  Out-of-plane ultimate bearing capacities of arches under different width-span ratios

    表  1  非保向力效应系数

    Table  1.   Non-conservative force effect coefficients

    试验参数 横向极限荷载效应系数 横向位移效应系数
    拱肋倾角 1.08~1.22 0.96~1.47
    矢跨比 1.01~1.13 0.90~1.54
    宽跨比 1.03~1.14 0.91~0.97
    拱肋刚度比 1.03~1.15 0.81~0.92
    下载: 导出CSV
  • [1] 李生勇, 陈宝春. 钢管混凝土提篮拱空间稳定性随机静力分析[J]. 长沙交通学院学报, 2008, 24(4): 1-5. doi: 10.3969/j.issn.1674-599X.2008.04.001

    LI Sheng-yong, CHEN Bao-chun. Stochastic static analysis on spatial stability of CFST tilt-basket arch bridge[J]. Journal of Changsha Communications University, 2008, 24(4): 1-5. (in Chinese) doi: 10.3969/j.issn.1674-599X.2008.04.001
    [2] 陈宝春, 韦建刚, 周俊, 等. 我国钢管混凝土拱桥应用现状与展望[J]. 土木工程学报, 2017, 50(6): 50-61. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201706006.htm

    CHEN Bao-chun, WEI Jian-gang, ZHOU Jun, et al. Application of concrete-filled steel tube arch bridges in China: current status and prospects[J]. China Civil Engineering Journal, 2017, 50(6): 50-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201706006.htm
    [3] 韦建刚, 陈家炜, 谢志涛, 等. 钢管混凝土哑铃形截面提篮型标准拱桥的构建与分析[J]. 福州大学学报(自然科学版), 2019, 47(5): 663-668. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201905017.htm

    WEI Jian-gang, CHEN Jia-wei, XIE Zhi-tao, et al. Establishment and analysis of standard CFST X-type dumbbell-shaped cross-section arch bridge[J]. Journal of Fuzhou University (Natural Science Edition), 2019, 47(5): 663-668. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201905017.htm
    [4] 邓继华, 周福霖, 谭平. 圆钢管混凝土拱空间极限荷载计算方法研究[J]. 建筑结构学报, 2014, 35(11): 28-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201411004.htm

    DENG Ji-hua, ZHOU Fu-lin, TAN Ping. Study on method for calculating spatial ultimate load of circular CFST arch[J]. Journal of Building Structures, 2014, 35(11): 28-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201411004.htm
    [5] GENG Yue, RANZI G, WANG Yu-tao, et al. Out-of-plane creep buckling analysis on slender concrete-filled steel tubular arches[J]. Journal of Constructional Steel Research, 2018, 140: 174-190. doi: 10.1016/j.jcsr.2017.10.010
    [6] 陈宝春, 韦建刚, 林嘉阳. 钢管混凝土(单圆管)单肋拱空间受力试验研究[J]. 工程力学, 2006, 23(5): 99-106. doi: 10.3969/j.issn.1000-4750.2006.05.018

    CHEN Bao-chun, WEI Jian-gang, LIN Jia-yang. Experimental study on concrete filled steel tubular (single tube) arch with one rib under spatial loads[J]. Engineering Mechanics, 2006, 23(5): 99-106. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.05.018
    [7] 宋福春. 钢管混凝土桁肋拱桥面外稳定性研究[D]. 福州: 福州大学, 2009.

    SONG Fu-chun. Research on the out-of-plane stability of CFST truss ribs arches[D]. Fuzhou: Fuzhou University, 2009. (in Chinese)
    [8] GAO Jing, SU Jia-zhan, CHEN Bao-chun. Experiment on a concrete filled steel tubular arch with corrugated steel webs subjected to spatial loading[J]. Applied Mechanics and Materials, 2012, 166-169: 37-42. doi: 10.4028/www.scientific.net/AMM.166-169.37
    [9] 韦建刚, 李晓辉, 陈礼榕, 等. 钢管混凝土哑铃形截面拱空间受力性能试验研究[J]. 工程力学, 2015, 32(11): 71-78. doi: 10.6052/j.issn.1000-4750.2013.07.0602

    WEI Jian-gang, LI Xiao-hui, CHEN Li-rong, et al. Experimental studies of out-of-plane mechanical behavior on CFST dumbbell section arch[J]. Engineering Mechanics, 2015, 32(11): 71-78. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.07.0602
    [10] 宋福春, 陈宝春. 钢管混凝土标准桁肋拱面外弹性稳定分析[J]. 工程力学, 2012, 29(9): 125-132. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201209021.htm

    SONG Fu-chun, CHEN Bao-chun. Analysis of out-of-plane elastic buckling of standard concrete filled steel tubular truss ribs arch[J]. Engineering Mechanics, 2012, 29(9): 125-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201209021.htm
    [11] 耿悦, 周昌杰, 王玉银, 等. 抛物线形钢管混凝土无铰拱出平面稳定性能研究[J]. 建筑结构学报, 2015, 36(增1): 114-119. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2015S1019.htm

    GENG Yue, ZHOU Chang-jie, WANG Yu-yin, et al. Out-of-plane buckling behavior of slender parabolic concrete-filled steel tubular arches with fixed ends[J]. Journal of Building Structures, 2015, 36(S1): 114-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2015S1019.htm
    [12] 黄奶清, 时娜. 横撑布置形式对提篮拱稳定影响[J]. 安徽建筑工业学院学报(自然科学版), 2011, 19(5): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-AHJG201105003.htm

    HUANG Nai-qing, SHI Na. Influence of the stability of the transverse braces arrangement on basket-handle arch bridge[J]. Journal of Anhui Institute of Architecture and Industry (Natural Science), 2011, 19(5): 5-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AHJG201105003.htm
    [13] 宋福春, 吴倩娜. 横撑对钢管混凝土桁肋提篮拱桥横向弹性稳定的影响[J]. 沈阳建筑大学学报(自然科学版), 2014, 30(5): 850-855. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201405012.htm

    SONG Fu-chun, WU Qian-na. Effects of crossbars on the lateral elastic stability of lift-basket CFST truss rib arch bridge[J]. Journal of Shenyang Jianzhu University (Natural Science), 2014, 30(5): 850-855. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201405012.htm
    [14] 曾德荣, 张庆明. 提篮式拱桥拱肋内倾角对横向稳定性的影响[J]. 重庆交通学院学报, 2006, 25(增1): 4-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT2006S1001.htm

    ZENG De-rong, ZHANG Qing-ming. Study on the stability influence of the angle of toe-in of the arch rib[J]. Journal of Chongqing Jiaotong University, 2006, 25(S1): 4-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT2006S1001.htm
    [15] 张庆明, 周罡. 大跨径提篮拱的拱肋侧倾角对稳定性影响的研究[J]. 桥梁建设, 2007, 37(4): 32-34. doi: 10.3969/j.issn.1003-4722.2007.04.009

    ZHANG Qing-ming, ZHOU Gang. Study of effect of arch rib tilting angle on stability of long span basket handle arch[J]. Bridge Construction, 2007, 37(4): 32-34. (in Chinese) doi: 10.3969/j.issn.1003-4722.2007.04.009
    [16] 杨永清. 抛物线双肋拱在保向力作用下的横向稳定性[J]. 西南交通大学学报, 2003, 38(1): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200301010.htm

    YANG Yong-qing. Lateral stability of parabolic double-rib arch under directional loads[J]. Journal of Southwest Jiaotong University, 2003, 38(1): 43-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200301010.htm
    [17] 杨永清, 蒲黔辉. 抛物线双肋拱在非保向力作用下的横向稳定性[J]. 西南交通大学学报, 2003, 38(3): 309-313. doi: 10.3969/j.issn.0258-2724.2003.03.016

    YANG Yong-qing, PU Qian-hui. Lateral stability of parabolic double-rib arch under non-directional loads[J]. Journal of Southwest Jiaotong University, 2003, 38(3): 309-313. (in Chinese) doi: 10.3969/j.issn.0258-2724.2003.03.016
    [18] GUO Yan-lin, ZHAO Si-yuan, PI Yong-lin, et al. An experimental study on out-of-plane inelastic buckling strength of fixed steel arches[J]. Engineering Structures, 2015, 98: 118-127. doi: 10.1016/j.engstruct.2015.04.029
    [19] LU Han-wen, LIU Ai-rong, PI Yong-lin, et al. Lateral-torsional buckling of arches under an arbitrary radial point load in a thermal environment incorporating shear deformations[J]. Engineering Structures, 2019, 179: 189-203. doi: 10.1016/j.engstruct.2018.10.071
    [20] GODDEN W G. The lateral buckling of tied arches[J]. Proceedings of the Institution of Civil Engineers, 1954, 3(4): 496-514.
    [21] ALMEIDA F N. Lateral buckling of twin arch ribs with transverse bars[D]. Columbus: The Ohio State University, 1970.
    [22] 项海帆, 钱莲萍. 单承重面拱桥侧向稳定的实用计算[C]//中国土木工程学会. 中国土木工程学会市政工程专业委员会第一次城市桥梁学术会议论文集. 北京: 中国土木工程学会, 1987: 693-699.

    XIANG Hai-fan, QIAN Lian-ping. Practical calculation of lateral stability of single arch bridge[C]//China Civil Engineering Society. Proceedings of the First Urban Bridge Academic Conference of Municipal Engineering Professional Committee of China Civil Engineering Society. Beijing: China Civil Engineering Society, 1987: 693-699. (in Chinese)
    [23] 金成棣, 张洁, 王溢华. 系杆拱桥的稳定性分析[J]. 上海公路, 2018(2): 1-6, 117. https://www.cnki.com.cn/Article/CJFDTOTAL-SHGL201802001.htm

    JIN Cheng-di, ZHANG Jie, WANG Yi-hua. Analysis on the stability of a tied arch bridge[J]. Shanghai Highways, 2018(2): 1-6, 117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHGL201802001.htm
    [24] 韦建刚, 平建春, 陈礼榕, 等. 考虑吊杆非保向力效应的钢管混凝土拱空间受力性能试验研究[J]. 建筑结构学报, 2017, 38(增1): 451-456. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2017S1065.htm

    WEI Jian-gang, PING Jian-chun, CHEN Li-rong, et al. Experimental study on spatial mechanical behavior of CFST arch under non-directional loads[J]. Journal of Building Structures, 2017, 38(S1): 451-456. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2017S1065.htm
    [25] 王玉涛. 考虑非保向力作用的钢管混凝土拱平面外稳定性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    WANG Yu-tao. Out-of-plane buckling of CFST arches under non-directional loads[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [26] 吴庆雄, 陈宝春, 韦建刚. 钢管混凝土结构材料非线性的一种有限元分析方法[J]. 工程力学, 2008, 25(6): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200806013.htm

    WU Qing-xiong, CHEN Bao-chun, WEI Jian-gang. A finite element method for analyzing material nonlinearity of concrete-filled steel tubular structures[J]. Engineering Mechanics, 2008, 25(6): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200806013.htm
    [27] 王媛, 叶智威, 吴庆雄. 钢管混凝土单圆管标准拱桥面外稳定性有限元分析方法研究[J]. 世界桥梁, 2015, 43(3): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201503011.htm

    WANG Yuan, YE Zhi-wei, WU Qing-xiong. Out-of-plane stability analysis for typical concrete-filled single steel circular tube arch bridge by finite element method[J]. World Bridges, 2015, 43(3): 38-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201503011.htm
    [28] HU Jun-liang, YAN Quan-sheng, YU Xiao-lin, et al. Ultimate bearing capacity analysis of concrete filled steel tubular arch considering the initial defects' influence[J]. Advanced Materials Research, 2012, 1615(446/447/448/449): 1248-1251.
    [29] 陈宝春, 刘福忠, 韦建刚. 327座钢管混凝土拱桥的统计分析[J]. 中外公路, 2011, 31(3): 96-103. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201103025.htm

    CHEN Bao-chun, LIU Fu-zhong, WEI Jian-gang. Statistical analysis of 327 concrete filled steel tubular arch bridges[J]. Journal of China and Foreign Highway, 2011, 31(3): 96-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201103025.htm
    [30] 陈宝春, 刘君平. 世界拱桥建设与技术发展综述[J]. 交通运输工程学报, 2020, 20(1): 27-41. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001005.htm

    CHEN Bao-chun, LIU Jun-ping. Review of construction and technology development of arch bridges in the world[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 27-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001005.htm
    [31] RAJEEV S, PETER D J, VARKEY M V. Study of concrete filled steel tubular arch bridge: a review[J]. Applied Mechanics and Materials, 2016, 857: 261-266.
    [32] 牟廷敏, 范碧琨, 赵艺程, 等. 钢管混凝土桥梁在中国的应用与发展[J]. 公路, 2017, 62(12): 161-165. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201712043.htm

    MOU Ting-min, FAN Bi-kun, ZHAO Yi-cheng, et al. Application and development of concrete-filled steel tubular bridges in China[J]. Highway, 2017, 62(12): 161-165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201712043.htm
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  760
  • HTML全文浏览量:  246
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-01
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回