留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大跨高墩连续刚构桥内力状态及其对地震反应的影响

石岩 李军 秦洪果 李萍 郑国足 王东升

石岩, 李军, 秦洪果, 李萍, 郑国足, 王东升. 大跨高墩连续刚构桥内力状态及其对地震反应的影响[J]. 交通运输工程学报, 2022, 22(1): 70-81. doi: 10.19818/j.cnki.1671-1637.2022.01.005
引用本文: 石岩, 李军, 秦洪果, 李萍, 郑国足, 王东升. 大跨高墩连续刚构桥内力状态及其对地震反应的影响[J]. 交通运输工程学报, 2022, 22(1): 70-81. doi: 10.19818/j.cnki.1671-1637.2022.01.005
SHI Yan, LI Jun, QIN Hong-guo, LI Ping, ZHENG Guo-zu, WANG Dong-sheng. Internal force state of long-span continuous rigid-frame bridge with high-rise piers and its effect on seismic response[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 70-81. doi: 10.19818/j.cnki.1671-1637.2022.01.005
Citation: SHI Yan, LI Jun, QIN Hong-guo, LI Ping, ZHENG Guo-zu, WANG Dong-sheng. Internal force state of long-span continuous rigid-frame bridge with high-rise piers and its effect on seismic response[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 70-81. doi: 10.19818/j.cnki.1671-1637.2022.01.005

大跨高墩连续刚构桥内力状态及其对地震反应的影响

doi: 10.19818/j.cnki.1671-1637.2022.01.005
基金项目: 

国家自然科学基金项目 51908265

国家自然科学基金项目 51768042

甘肃省科技计划项目 20JR5RA439

详细信息
    作者简介:

    石岩(1985-),男,甘肃通渭人,兰州理工大学副教授,工学博士,从事桥梁抗震与损伤控制研究

    通讯作者:

    王东升(1974-),男,内蒙古通辽人,河北工业大学教授,工学博士

  • 中图分类号: U448.23

Internal force state of long-span continuous rigid-frame bridge with high-rise piers and its effect on seismic response

Funds: 

National Natural Science Foundation of China 51908265

National Natural Science Foundation of China 51768042

Science and Technology Planning Project of Gansu Province 20JR5RA439

More Information
  • 摘要: 为研究实际施工过程和混凝土收缩徐变对连续刚构桥成桥内力状态的影响以及不同内力状态下主桥的地震反应差异,以某大跨高墩连续刚构桥为背景,建立了MIDAS/Civil施工阶段分析模型,并讨论了各施工因素对主桥内力状态的影响; 基于等效荷载法提出了适用于连续刚构桥的内力等效荷载计算方法,通过将主桥内力进行分解,以若干简单的内力等效荷载分别进行等效,再利用叠加原理求和,得到符合实际情况的等效内力状态; 采用OpenSees建立了全桥非线性动力分析模型,并施加不同内力状态所对应的内力等效荷载,使其处于对应的等效内力状态; 选取40组典型速度脉冲型近断层地震动记录为输入,开展了不同内力状态下全桥非线性动力时程分析。分析结果表明:若忽略主桥预应力作用,将高估主梁最大弯矩约2.8倍,高估主墩墩顶和墩底最大弯矩分别约3.5、2.0倍,且弯矩方向皆与实际情况相反,故预应力作用对连续刚构桥内力状态的影响不可忽视; 墩梁固结附近主梁等效内力峰值与目标内力峰值的最大误差在5%以内; 近断层地震动作用下,主墩侧移角、曲率延性系数和塑性铰区钢筋最大应变都随混凝土收缩徐变的增加呈逐渐减小的趋势,沿纵桥向则更为明显; 提出的内力等效荷载计算方法可为高烈度区连续刚构桥抗震设计和性能评估提供参考。

     

  • 图  1  桥跨布置与截面形式(单位:cm)

    Figure  1.  Span layout and section forms of bridge (unit: cm)

    图  2  基于MIDAS/Civil的施工阶段分析模型

    Figure  2.  Construction stage analysis model based on MIDAS/Civil

    图  3  基于OpenSees的非线性数值分析模型

    Figure  3.  Nonlinear numerical analysis model built via OpenSees

    图  4  不同模型中主桥的弯矩

    Figure  4.  Bending moments of main bridge in different models

    图  5  主梁轴向等效节点荷载及其轴力对比

    Figure  5.  Axial equivalent node loads of main girder and comparison of their axial forces

    图  6  主梁法向等效节点荷载及其弯矩对比

    Figure  6.  Normal equivalent node loads of main girder and comparison of their bending moments

    图  7  主墩轴向等效节点荷载及其轴力对比

    Figure  7.  Axial equivalent node loads of main piers and comparison of their axial forces

    图  8  主桥内力等效荷载施加形式

    Figure  8.  Action form of internal force equivalent loads for main bridge

    图  9  主墩墩顶沿纵、横桥向的侧移角

    Figure  9.  Drift angles at top of main piers along longitudinal and transverse directions of bridge

    图  10  主墩墩顶与墩底沿纵桥向的最大曲率延性系数

    Figure  10.  Maximum curvature ductility factors at top and bottom of main piers along longitudinal direction of bridge

    图  11  主梁根部钢筋最大应变

    Figure  11.  Maximum strains of reinforcement at root of main girder

    图  12  主墩墩顶与墩底塑性铰区截面钢筋最大应变

    Figure  12.  Maximum strains of reinforcement in plastic hinge areas at top and bottom of main piers

    表  1  桥梁自振周期和振型

    Table  1.   Natural vibration periods and mode shapes of bridge

    振型阶数 TM/s TO/s 振型特征
    1 4.1 3.9 主桥横向1阶振动
    2 3.4 3.3 全桥纵向1阶振动
    3 2.6 2.6 主桥横向2阶振动
    4 2.5 2.5 引桥纵向振动
    5 1.8 1.9 全桥纵向2阶振动
    下载: 导出CSV

    表  2  施工阶段分析模型

    Table  2.   Construction stage analysis models

    模型编号 施加荷载类型 施工过程 分析类型 收缩徐变年限/年
    1 自重、二期恒载 不考虑 静力分析 不考虑
    2 自重、预应力和二期恒载 不考虑 静力分析 不考虑
    3 自重、预应力、挂篮和二期恒载 考虑 施工阶段分析 不考虑
    4 自重、预应力、挂篮和二期恒载 考虑 施工阶段分析 5
    5 自重、预应力、挂篮和二期恒载 考虑 施工阶段分析 10
    6 自重、预应力、挂篮和二期恒载 考虑 施工阶段分析 15
    7 自重、预应力、挂篮和二期恒载 考虑 施工阶段分析 20
    下载: 导出CSV

    表  3  墩顶处轴向等效节点荷载

    Table  3.   Axial equivalent node loads at top of piers  MN

    模型编号 $ {{{\bar N}_{{\rm{Pl - 1}}}}(1)}$ ${{{\bar N}_{{\rm{Pl - 2}}}}(1)} $ ${{{\bar N}_{{\rm{P}}2 - 1}}(1)} $ $ {{{\bar N}_{{\rm{P}}2 - 2}}(1)}$
    2 74.08 102.29 99.35 77.00
    3 74.18 89.79 89.37 74.55
    4 71.03 86.94 87.87 70.13
    5 69.95 85.60 86.95 68.67
    下载: 导出CSV

    表  4  主梁和主墩部分关键截面应力状态

    Table  4.   Stress states at partial key sections of main girder and main piers  MPa

    关键截面 应力位置 模型2 模型3 模型4 模型5 关键截面 应力位置 模型2 模型3 模型4 模型5
    GKS1-1 顶板σc -23.2 -18.8 -17.0 -16.6 PKS1-1 左边缘σc -4.6 -3.2 -4.2 -4.2
    顶板σs -134.6 -108.8 -98.5 -96.0 左边缘σs -28.3 -19.7 -24.2 -25.6
    底板σc -10.2 -9.6 -9.6 -9.8 右边缘σc -0.4 -1.8 -1.4 -1.3
    底板σs -59.3 -55.6 -55.5 -57.0 右边缘σs -2.7 -10.9 -8.7 -7.8
    GKS2-2 顶板σc -24.9 -20.0 -17.7 -17.5 PKS2-2 左边缘σc -2.3 -3.7 -3.2 -3.0
    顶板σs -144.4 -116.1 -102.3 -101.4 左边缘σs -14.1 -23.0 -19.6 -18.3
    底板σc -8.9 -8.5 -9.2 -9.0 右边缘σc -6.4 -4.8 -5.8 -6.1
    底板σs -51.6 -49.4 -53.4 -52.1 右边缘σs -39.2 -29.8 -35.6 -37.3
    GKS3-3 顶板σc -25.5 -20.6 -18.2 -17.6 PKS3-3 左边缘σc -4.7 -3.4 -3.8 -4.0
    顶板σs -147.9 -119.6 -105.5 -102.3 左边缘σs -28.7 -20.9 -23.5 -24.5
    底板σc -8.4 -8.6 -8.5 -8.8 右边缘σc -1.2 -2.5 -1.7 -1.4
    底板σs -48.8 -49.6 -49.3 -51.3 右边缘σs -7.4 -15.1 -10.2 -8.6
    GKS4-4 顶板σc -22.6 -18.7 -16.8 -16.4 PKS4-4 左边缘σc -2.8 -4.3 -3.3 -3.0
    顶板σs -131.0 -108.5 -97.1 -94.9 左边缘σs -17.4 -26.3 -20.3 -18.4
    底板σc -10.8 -10.2 -9.9 -10.1 右边缘σc -6.7 -5.2 -5.8 -6.0
    底板σs -62.8 -59.2 -57.1 -58.4 右边缘σs -41.1 -32.1 -35.8 -37.0
    下载: 导出CSV
  • [1] 李建中, 管仲国. 桥梁抗震设计理论发展: 从结构抗震减震到震后可恢复设计[J]. 中国公路学报, 2017, 30(12): 1-9, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201712002.htm

    LI Jian-zhong, GUAN Zhong-guo. Research progress on bridge seismic design: target from seismic alleviation to post-earthquake structural resilience[J]. China Journal of Highway and Transport, 2017, 30(12): 1-9, 59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201712002.htm
    [2] 石岩, 王东升, 孙治国. 近断层地震动下减隔震桥梁地震反应分析[J]. 桥梁建设, 2014, 44(3): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201403004.htm

    SHI Yan, WANG Dong-sheng, SUN Zhi-guo. Analysis of seismic response of seismically mitigated and isolated bridge subjected to near-fault ground motion[J]. Bridge Construction, 2014, 44(3): 19-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201403004.htm
    [3] 冯忠居, 陈慧芸, 袁枫斌, 等. 桩-土-断层耦合作用下桥梁桩基竖向承载特性[J]. 交通运输工程学报, 2019, 19(2): 36-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201902007.htm

    FENG Zhong-ju, CHEN Hui-yun, YUAN Feng-bin, et al. Vertical bearing characteristics of bridge pile foundation under pile-soil-fault coupling action[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 36-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201902007.htm
    [4] WU Fang-wen, ZHOU Jing-wen, ZHAO Yang-yang, et al. Performance-based seismic fragility and risk assessment of five-span continuous rigid frame bridges[J]. Advances in Civil Engineering, 2021, 2021: 6657663.
    [5] PENG Yuan-cheng, ZHANG Zi-xiang. Development of a novel type of open-web continuous reinforced-concrete rigid-frame bridge[J]. Journal of Bridge Engineering, 2020, 25(8): 05020005. doi: 10.1061/(ASCE)BE.1943-5592.0001595
    [6] WANG Hui-li, XIE Chang-ling, LIU D, et al. Continuous reinforced concrete rigid-frame bridges in China[J]. Practice Periodical on Structural Design and Construction, 2019, 24(2): 05019002. doi: 10.1061/(ASCE)SC.1943-5576.0000421
    [7] 陈宝春, 李聪, 黄伟, 等. 超高性能混凝土收缩综述[J]. 交通运输工程学报, 2018, 18(1): 13-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201801004.htm

    CHEN Bao-chun, LI Cong, HUANG Wei, et al. Review of ultra-high performance concrete shrinkage[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 13-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201801004.htm
    [8] TONG Lei, WANG Rong-xia, WANG Dong-sheng. Seismic cracking mechanism and control for pre-stressed concrete box girders of continuous rigid-frame bridges: Miaoziping Bridge in Wenchuan Earthquake as an example[J]. Advances in Bridge Engineering, 2021, 2(1): 17. doi: 10.1186/s43251-021-00040-z
    [9] HAN Qiang, DU Xiu-Li, LIU Jing-bo, et al. Seismic damage of highway bridges during the 2008 Wenchuan Earthquake[J]. Earthquake Engineering and Engineering Vibration, 2009, 8(2): 263-273. doi: 10.1007/s11803-009-8162-0
    [10] 李军. 考虑内力状态的大跨高墩连续刚构桥地震反应及易损性分析[D]. 兰州: 兰州理工大学, 2021.

    LI Jun. Seismic response and fragility analysis of long-span continuous rigid-frame bridge with high-rise piers considering internal force state[D]. Lanzhou: Lanzhou University of Technology, 2021. (in Chinese)
    [11] 赵秋红, 李晨曦, 董硕. 深水桥墩地震响应研究现状与展望[J]. 交通运输工程学报, 2019, 19(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201902004.htm

    ZHAO Qiu-hong, LI Chen-xi, DONG Shuo. Research status and prospect of seismic response of deep-water bridge pier[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201902004.htm
    [12] ZONG Zhou-hong, XIA Zhang-hua, LIU Hai-hong, et al. Collapse failure of prestressed concrete continuous rigid-frame bridge under strong earthquake excitation: testing and simulation[J]. Journal of Bridge Engineering, 2016, 21(9): 04016047.
    [13] LI Xiao-qiong, LI Zhong-xian, CREWE A J. Nonlinear seismic analysis of a high-pier, long-span, continuous RC frame bridge under spatially variable ground motions[J]. Soil Dynamics and Earthquake Engineering, 2018, 114: 298-312.
    [14] 赵珺, 牛荻涛. 在役钢筋混凝土连续刚构桥梁抗震性能评估[J]. 中国公路学报, 2014, 27(9): 74-81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201409011.htm

    ZHAO Jun, NIU Di-tao. Seismic performance evaluation for reinforced concrete continuous rigid frame bridge in service[J]. China Journal of Highway and Transport, 2014, 27(9): 74-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201409011.htm
    [15] 周敉, 朱国强, 吴江, 等. 地震下大跨径连续刚构桥合理约束体系研究[J]. 振动与冲击, 2019, 38(10): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201910015.htm

    ZHOU Mi, ZHU Guo-qiang, WU Jiang, et al. Constraint system for a long-span continuous rigid frame bridge under earthquake[J]. Journal of Vibration and Shock, 2019, 38(10): 98-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201910015.htm
    [16] 辛亚兵, 刘志文, 邵旭东, 等. 大跨连续刚构桥下击暴流作用效应试验研究[J]. 中国公路学报, 2019, 32(10): 279-290. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201910028.htm

    XIN Ya-bing, LIU Zhi-wen, SHAO Xu-dong, et al. Effects of downburst on long span continuous rigid frame bridges[J]. China Journal of Highway and Transport, 2019, 32(10): 279-290. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201910028.htm
    [17] 刘永健, 马印平, 田智娟, 等. 矩形钢管混凝土组合桁梁连续刚构桥实桥试验[J]. 中国公路学报, 2018, 31(5): 53-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201805008.htm

    LIU Yong-jian, MA Yin-ping, TIAN Zhi-juan, et al. Field test of rectangular concrete filled steel tubular composite truss bridge with continuous rigid system[J]. China Journal of Highway and Transport, 2018, 31(5): 53-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201805008.htm
    [18] 石岩, 张奋杰, 韩建平, 等. 高墩大跨度连续刚构桥典型施工阶段地震损伤分析[J]. 振动与冲击, 2020, 39(22): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202022014.htm

    SHI Yan, ZHANG Fen-jie, HAN Jian-ping, et al. Seismic damage analysis of a long-span continuous rigid frame bridge with high piers during typical construction stages[J]. Journal of Vibration and Shock, 2020, 39(22): 89-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202022014.htm
    [19] 蒋崇文, 易伟建, 庞于涛. 地震动强度指标与大跨度刚构桥梁损伤的相关性[J]. 中国公路学报, 2016, 29(9): 97-102.

    JIANG Chong-wen, YI Wei-jian, PANG Yu-tao. Correlation between seismic intensity indices and damages of large span rigid frame bridges[J]. China Journal of Highway and Transport, 2016, 29(9): 97-102. (in Chinese)
    [20] 江辉, 金佳敏, 王志刚, 等. 基于IDA的深水连续刚构桥桥墩概率性地震损伤特性[J]. 中国公路学报, 2017, 30(12): 89-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201712011.htm

    JIANG Hui, JIN Jia-min, WANG Zhi-gang, et al. Probabilistic seismic damage characteristics for piers of deep-water continuous rigid frame bridge based on IDA method[J]. China Journal of Highway and Transport, 2017, 30(12): 89-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201712011.htm
    [21] 单德山, 张二华, 董俊, 等. 汶川地震动衰减特性及其大跨高墩连续刚构桥的地震响应规律[J]. 土木工程学报, 2017, 50(4): 107-115. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201704013.htm

    SHAN De-shan, ZHANG Er-hua, DONG Jun, et al. Ground motion attenuation characteristics of Wenchuan earthquake and seismic response law of long-span continuous rigid frame bridge with high-rise pier[J]. China Civil Engineering Journal, 2017, 50(4): 107-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201704013.htm
    [22] 陈爱军, 彭容新, 王解军, 等. 大跨连续刚构桥双肢薄壁墩抗震性能研究[J]. 振动与冲击, 2020, 39(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202001002.htm

    CHEN Ai-jun, PENG Rong-xin, WANG Jie-jun, et al. Aseismic performance of double-limb thin-walled piers of a large-span continuous rigid frame bridge[J]. Journal of Vibration and Shock, 2020, 39(1): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202001002.htm
    [23] LIU Yang, MEI Zhu, WU Bin, et al. Seismic behaviour and failure-mode-prediction method of a reinforced concrete rigid-frame bridge with thin-walled tall piers: investigation by model-updating hybrid test[J]. Engineering Structures, 2020, 208: 110302.
    [24] LIN Yuan-zheng, ZONG Zhou-hong, BI Kai-ming, et al. Experimental and numerical studies of the seismic behavior of a steel-concrete composite rigid-frame bridge subjected to the surface rupture at a thrust fault[J]. Engineering Structures, 2020, 205: 110105.
    [25] 闫维明, 罗振源, 许维炳, 等. 近断层脉冲型地震动作用下高墩连续刚构桥振动台试验研究[J]. 北京工业大学学报, 2020, 46(8): 868-878. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202008004.htm

    YAN Wei-ming, LUO Zhen-yuan, XU Wei-bing, et al. Experimental research on the seismic response of a continuous rigid frame bridge with high piers under near-fault pulse-like ground motions[J]. Journal of Beijing University of Technology, 2020, 46(8): 868-878. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202008004.htm
    [26] MUTHUKUMAR S, DESROCHES R. A Hertz contact model with non-linear damping for pounding simulation[J]. Earthquake Engineering and Structural Dynamics, 2006, 35(7): 811-828.
    [27] TAFLANIDIS A A. Optimal probabilistic design of seismic dampers for the protection of isolated bridges against near-fault seismic excitations[J]. Engineering Structures, 2011, 33(12): 3496-3508.
    [28] GUO An-xin, SHEN Yu, BAI Jiu-lin, et al. Application of the endurance time method to the seismic analysis and evaluation of highway bridges considering pounding effects[J]. Engineering Structures, 2017, 131: 220-230.
    [29] BAKER J W, LIN Ting, SHAHI S K, et al. New ground motion selection procedures and selected motions for the PEER transportation research program[R]. Berkeley: Pacific Earthquake Engineering Research Center, 2011.
    [30] 白越. 基于OpenSees的高墩大跨混凝土连续刚构桥地震易损性研究[D]. 成都: 西南交通大学, 2016.

    BAI Yue. Research of seismic vulnerability for high-pier large-span concrete continuous rigid frame bridge based on OpenSees[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  874
  • HTML全文浏览量:  246
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-07
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回