留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nataf变换的桥梁系统多维地震易损性分析方法

李佳璐 任乐平 胡伟

李佳璐, 任乐平, 胡伟. Nataf变换的桥梁系统多维地震易损性分析方法[J]. 交通运输工程学报, 2022, 22(1): 82-92. doi: 10.19818/j.cnki.1671-1637.2022.01.006
引用本文: 李佳璐, 任乐平, 胡伟. Nataf变换的桥梁系统多维地震易损性分析方法[J]. 交通运输工程学报, 2022, 22(1): 82-92. doi: 10.19818/j.cnki.1671-1637.2022.01.006
LI Jia-lu, REN Le-ping, HU Wei. Multi-dimensional seismic fragility analysis method of bridge system based on Nataf transformation[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 82-92. doi: 10.19818/j.cnki.1671-1637.2022.01.006
Citation: LI Jia-lu, REN Le-ping, HU Wei. Multi-dimensional seismic fragility analysis method of bridge system based on Nataf transformation[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 82-92. doi: 10.19818/j.cnki.1671-1637.2022.01.006

Nataf变换的桥梁系统多维地震易损性分析方法

doi: 10.19818/j.cnki.1671-1637.2022.01.006
基金项目: 

国家自然科学基金项目 51708038

陕西省自然科学基金项目 2020JM-234

详细信息
    作者简介:

    李佳璐(1991-), 女,陕西西安人,长安大学工程师,从事结构抗震研究

  • 中图分类号: U441.4

Multi-dimensional seismic fragility analysis method of bridge system based on Nataf transformation

Funds: 

National Natural Science Foundation of China 51708038

Natural Science Foundation of Shaanxi Province 2020JM-234

More Information
  • 摘要: 在多维性能极限状态理论框架下,考虑桥梁各构件地震响应参数相关性,引入Nataf变换,提出了改进的桥梁系统多维地震易损性分析方法; 以一座三跨V撑连续梁桥为例,利用OpenSees软件建立桥梁系统非线性动力分析模型,从美国太平洋地震研究中心强震数据库中选取20条地震波进行增量动力分析,并获得桥梁结构在地震作用下的最大响应样本; 利用最大似然估计法获得桥梁构件地震需求概率模型统计参数,结合定义的桥梁构件损伤指标,应用提出的方法,分析了算例桥梁多维系统地震易损性。分析结果表明:提出的方法在考虑构件地震响应参数与性能极限状态相关性的基础上,可以不依赖构件地震响应参数间的联合概率密度函数,计算得到桥梁系统易损性; 在构建多维极限状态方程时,桥梁构件失效模式排序对桥梁系统地震多维易损性影响偏差在3%以内,构件失效模式排序对易损性分析结果影响不大; 在任一损伤状态下,随着地面峰值加速度与极限状态相关系数的增加,桥梁系统与过渡墩在地震作用下的失效概率比值逐渐减小,并接近于1,不同桥梁构件间的性能极限状态相关性变弱,系统失效域面积变小,导致桥梁系统失效概率降低,系统多维易损性越接近性能指标相互独立时的评估结果,当采用多维性能指标时,性能指标间的相关性不可忽略,否则将导致过高估计桥梁结构的抗震性能。

     

  • 图  1  基于Nataf变换的桥梁多维易损性分析方法流程

    Figure  1.  Flow of multi-dimensional fragility analysis method based on Nataf transformation for bridge

    图  2  桥梁结构布置(单位:m)

    Figure  2.  Layout of bridge structure (unit: m)

    图  3  选定地面运动的加速度反应谱

    Figure  3.  Acceleration response spectrums of selected ground motion

    图  4  桥梁系统多维易损性曲线

    Figure  4.  Multi-dimensional fragility curves of bridge system

    图  5  失效模式排序对桥梁系统多维易损性的影响

    Figure  5.  Effect of failure mode sequencing on multi-dimensional fragility of bridge system

    图  6  极限状态相关系数对桥梁系统多维易损性的影响

    Figure  6.  Influence of limit state correlation coefficient on multi-dimensional fragility of bridge system

    表  1  二十条地震记录

    Table  1.   Twenty seismic records

    序号 地震名称 时间 测站名称 震级
    1 Kern County 1952 Santa Barbara Courthouse 7.4
    2 Kern County 1952 Taft Lincoln School 7.4
    3 Northern Calif-03 1954 Ferndale City Hall 5.7
    4 Borrego Mtn 1968 El Centro Array 6.5
    5 San Fernando 1971 LA-Hollywood Stor FF 6.6
    6 San Fernando 1971 Lake Hughes #1 6.6
    7 San Fernando 1971 Palmdale Fire Station 6.6
    8 San Fernando 1971 Pasadena-CIT Athenaeum 6.6
    9 San Fernando 1971 Santa Felita Dam (Outlet) 6.6
    10 San Fernando 1971 Whittier Narrows Dam 6.6
    11 Tabas Iran 1978 Boshrooyeh 7.4
    12 Imperial Valley-06 1979 Calipatria Fire Station 6.5
    13 Imperial Valley-06 1979 Delta 6.5
    14 Imperial Valley-06 1979 El Centro Array #13 6.5
    15 Imperial Valley-06 1979 Niland Fire Station 6.5
    16 Livermore-01 1980 Del Valle Dam (Toe) 5.8
    17 Trinidad 1980 Rio Dell Overpass E Ground 5.5
    18 Trinidad 1980 Rio Dell Overpass W Ground 5.5
    19 Irpinia Italy-01 1980 Brienza 6.9
    20 Irpinia Italy-02 1980 Rioneroin Vulture 6.2
    下载: 导出CSV

    表  2  桥梁构件在不同损伤状态下的损伤指标

    Table  2.   Damage indexes of bridge components under different damage states

    构件 损伤指标 损伤状态
    轻微损伤 中等损伤 中等损伤 完全破坏
    过渡墩 曲率延性比 1 2 4 7
    支座 位移/m 0.2 0.4 0.6 0.8
    下载: 导出CSV

    表  3  桥梁各构件地震响应均值与标准差

    Table  3.   Means and standard deviations of seismic responses of bridge components

    峰值地面加速度/g 过渡墩 主桥支座 过渡墩支座
    均值 标准差 均值/m 标准差/m 均值/m 标准差/m
    0.1 0.209 0.095 0.054 0.015 0.037 0.010
    0.2 0.498 0.201 0.094 0.034 0.065 0.024
    0.3 0.842 0.347 0.138 0.055 0.096 0.039
    0.4 1.233 0.471 0.182 0.076 0.126 0.054
    0.5 1.622 0.643 0.225 0.097 0.155 0.069
    0.6 2.081 0.933 0.267 0.117 0.186 0.083
    0.7 2.606 1.350 0.309 0.137 0.214 0.099
    0.8 3.148 1.740 0.353 0.157 0.244 0.114
    0.9 3.814 2.233 0.399 0.177 0.275 0.129
    1.0 4.474 2.772 0.444 0.198 0.308 0.143
    下载: 导出CSV

    表  4  桥梁各构件地震响应间的相关系数

    Table  4.   Correlation coefficients of seismic responses of bridge components

    相关系数 过渡墩 主墩支座 过渡墩支座
    过渡墩 1.000 0.768 0.750
    主墩支座 0.768 1.000 0.996
    过渡墩支座 0.750 0.996 1.000
    下载: 导出CSV
  • [1] NIELSON B G, DESROCHES R. Seismic fragility methodology for highway bridges using a component level approach[J]. Earthquake Engineering and Structural Dynamics, 2007, 36(6): 823-839. doi: 10.1002/eqe.655
    [2] 李立峰, 吴文朋, 黄佳梅, 等. 地震作用下中等跨径RC连续梁桥系统易损性研究[J]. 土木工程学报, 2012, 45(10): 152-160. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201210020.htm

    LI Li-feng, WU Wen-peng, HUANG Jia-mei, et al. Study on system vulnerability of medium span reinforced concrete continuous girder bridge under earthquake excitation[J]. China Civil Engineering Journal, 2012, 45(10): 152-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201210020.htm
    [3] 宋帅, 钱永久, 吴刚. 基于多元Copula函数的桥梁体系地震易损性分析方法研究[J]. 振动与冲击, 2017, 36(9): 122-129. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201709019.htm

    SONG Shuai, QIAN Yong-jiu, WU Gang. Seismic fragility analysis of a bridge system based on multivariate Copula function[J]. Journal of Vibration and Shock, 2017, 36(9): 122-129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201709019.htm
    [4] 郑凯锋, 陈力波, 庄卫林, 等. 基于概率性地震需求模型的桥梁易损性分析[J]. 工程力学, 2013, 30(5): 165-171, 187. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201305027.htm

    ZHENG Kai-feng, CHEN Li-bo, ZHUANG Wei-lin, et al. Bridge vulnerability analysis based on probabilistic seismic demand models[J]. Engineering Mechanics, 2013, 30(5): 165-171, 187. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201305027.htm
    [5] 刘骁骁, 吴子燕, 王其昂. 基于多维性能极限状态的概率地震需求分析[J]. 振动与冲击, 2017, 36(1): 181-187, 206. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201701027.htm

    LIU Xiao-xiao, WU Zi-yan, WANG Qi-ang. Probabilistic seismic demand analysis based on multi-dimensional performance limit states[J]. Journal of Vibration and Shock, 2017, 36(1): 181-187, 206. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201701027.htm
    [6] 钟剑, 任伟新, 万华平, 等. 两水准地震设防下的斜拉桥体系易损性分析[J]. 中国公路学报, 2017, 30(12): 101-109. doi: 10.3969/j.issn.1001-7372.2017.12.011

    ZHONG Jian, REN Wei-xin, WAN Hua-ping, et al. System fragility analysis for cable-stayed bridges under two level seismic hazard[J]. China Journal of Highway and Transport, 2017, 30(12): 101-109. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.12.011
    [7] 任乐平. 基于模糊失效准则的V腿连续梁桥地震易损性及风险评估[D]. 西安: 长安大学, 2020.

    REN Le-ping. Seismic fragility and risk assessment of V-shaped continuous girder bridge based on fuzzy failure criterion[D]. Xi'an: Chang'an University, 2020. (in Chinese)
    [8] REN Le-ping, ZHANG Gang, ZHANG Yong-fei, et al. Seismic fragility analysis of V-shaped continuous girder bridges[J]. KSCE Journal of Civil Engineering, 2020, 24(3): 835-846. doi: 10.1007/s12205-020-0805-8
    [9] CHOI E, DESROCHES R, NIELSON B. Seismic fragility of typical bridges in moderate seismic zones[J]. Engineering Structures, 2004, 26(2): 187-199. doi: 10.1016/j.engstruct.2003.09.006
    [10] PAN Y, AGRAWAL A K, GHOSN M. Seismic fragility of continuous steel highway bridges in New York State[J]. Journal of Bridge Engineering, 2007, 12(6): 689-699. doi: 10.1061/(ASCE)1084-0702(2007)12:6(689)
    [11] YANG C S W, WERNER S D, DESROCHES R. Seismic fragility analysis of skewed bridges in the central southeastern United States[J]. Engineering Structures, 2015, 83(1): 116-128.
    [12] MUNTASIR BILLAH A H M, SHAHRIA ALAM M. Seismic fragility assessment of highway bridges: a state-of-the-art review[J]. Structure and Infrastructure Engineering, 2015, 11(6): 804-832. doi: 10.1080/15732479.2014.912243
    [13] TAVARES D H, SUESCUN J R, PAULTRE P, et al. Seismic fragility of a highway bridge in Quebec[J]. Journal of Bridge Engineering, 2013, 18(11): 1131-1139. doi: 10.1061/(ASCE)BE.1943-5592.0000471
    [14] RAMANATHAN K, PADGETT J E, DESROCHES R. Temporal evolution of seismic fragility curves for concrete box girder bridges in California[J]. Engineering Structures, 2015, 97(1): 29-46.
    [15] WU Wen-peng, LI Li-feng, SHAO Xu-dong. Seismic assessment of medium-span concrete cable-stayed bridges using the component and system fragility functions[J]. Journal of Bridge Engineering, 2016, 21(6): 04016027.
    [16] 宋帅, 吴元昊, 徐佰顺, 等. 斜拉桥系统地震易损性评估的Pair Copula技术[J]. 工程力学, 2021, 38(9): 110-123. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202109011.htm

    SONG Shuai, WU Yuan-hao, XU Bai-shun, et al. Pair Copula technique of seismic vulnerability assessment of cable-stayed bridge system[J]. Engineering Mechanics, 2021, 38(9): 110-123. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202109011.htm
    [17] 吴文朋, 李立峰. 桥梁结构系统地震易损性分析方法研究[J]. 振动与冲击, 2018, 37(21): 273-280. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201821040.htm

    WU Wen-peng, LI Li-feng. System seismic fragility analysis methods for bridge structures[J]. Journal of Vibration and Shock, 2018, 37(21): 273-280. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201821040.htm
    [18] CIMELLARO G P, REINHORN A M. Multidimensional performance limit state for hazard fragility functions[J]. Journal of Engineering Mechanics, 2011, 137(1): 47-60.
    [19] 孙鸿宾, 吴子燕, 刘骁骁. 基于多维性能极限状态的结构易损性分析[J]工程力学, 2013, 30(5): 147-152. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201305024.htm

    SUN Hong-bin, WU Zi-yan, LIU Xiao-xiao. Multidimensional performance limit states for structural fragility estimation[J]. Engineering Mechanics, 2013, 30(5): 147-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201305024.htm
    [20] 韩建平, 周帅帅. 考虑非结构构件损伤的钢筋混凝土框架建筑多维地震易损性分析[J]. 地震工程与工程振动, 2020, 40(1): 39-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202001005.htm

    HAN Jian-ping, ZHOU Shuai-shuai. Multi-dimensional seismic fragility analysis of reinforced concrete framed building considering damage of non-structural components[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(1): 39-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202001005.htm
    [21] 单德山, 顾晓宇, 董俊, 等. 基于可靠度的桥梁构件三维地震易损性分析[J]. 西南交通大学学报, 2019, 54(5): 885-896, 882. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201905001.htm

    SHAN De-shan, GU Xiao-yu, DONG Jun, et al. 3D seismic vulnerability analysis of bridge structural components based on reliability[J]. Journal of Southwest Jiaotong University, 2019, 54 (5): 885-896, 882. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201905001.htm
    [22] 董俊, 曾永平, 单德山. 高墩大跨铁路桥梁构件三维地震易损性分析[J]. 哈尔滨工业大学学报, 2019, 51(3): 141-149. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201903021.htm

    DONG Jun, ZENG Yong-ping, SHAN De-shan. Three-dimensional seismic vulnerability analysis of long-span railway bridge components with high pier[J]. Journal of Harbin Institute of Technology, 2019, 51(3): 141-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201903021.htm
    [23] WANG Qi-ang, WU Zi-yan, LIU Shu-kui. Multivariate probabilistic seismic demand model for the bridge multidimensional fragility analysis[J]. KSCE Journal of Civil Engineering, 2018, 22(9): 3443-3451.
    [24] 黄小宁, 杜永峰, 李慧. 多维性能极限状态平面不规则结构易损性分析[J]. 振动. 测试与诊断, 2017, 37(3): 560-566, 632. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201703025.htm

    HUANG Xiao-ning, DU Yong-feng, LI Hui. Multidimensional performance limit states for fragility analyze of plane irregular structure[J]. Journal of Vibration, Measurement and Diagnosis, 2017, 37(3): 560-566, 632. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201703025.htm
    [25] 刘骁骁, 吴子燕, 王其昂. 基于多维性能极限状态的概率地震需求分析[J]. 振动与冲击, 2017, 36(1): 181-187, 206. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201701027.htm

    LIU Xiao-xiao, WU Zi-yan, WANG Qi-ang. Probabilistic seismic demand analysis based on multi-dimensional performance limit states[J]. Journal of Vibration and Shock, 2017, 36(1): 181-187, 206. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201701027.htm
    [26] 贾大卫, 吴子燕, 何乡. 基于概率-非概率混合可靠性模型的结构地震易损性分析[J]. 地震工程与工程振动, 2021, 41(4): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202104010.htm

    JIA Da-wei, WU Zi-yan, HE Xiang. Structure seismic vulnerability analysis based on probability-non-probability hybrid reliability model[J]. Earthquake Engineering and Engineering Dynamics, 2021, 41(4): 90-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202104010.htm
    [27] CIMELLARO G P, REINHORN A M, BRUNEAU M. Framework for analytical quantification of disaster resilience[J]. Engineering Structures, 2010, 32(11): 3639-3649.
    [28] 沈国煜, 袁万城, 庞于涛. 基于Nataf变换的桥梁结构地震易损性分析[J]. 工程力学, 2014, 31(6): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201406013.htm

    SHEN Guo-yu, YUAN Wan-cheng, PANG Yu-tao. Bridge seismic fragility analysis based on Nataf transformation[J]. Engineering Mechanics, 2014, 31(6): 93-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201406013.htm
    [29] SHOME N, CORNELL C A, BAZZURRO P, et al. Earthquakes, records, and nonlinear responses[J]. Earthquake Spectra, 1998, 14(3): 469-500.
    [30] PADGETT J E, NIELSON B G, DESROCHES R. Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios[J]. Earthquake Engineering and Structural Dynamics, 2008, 37(5): 711-725. (in Chinese)
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  711
  • HTML全文浏览量:  203
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-21
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回