留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高性能砂浆砌体短柱轴压试验

黄卿维 廖妙星 陈宝春 卢绍斌 刘君平 李聪 黄文金 黄新艺

黄卿维, 廖妙星, 陈宝春, 卢绍斌, 刘君平, 李聪, 黄文金, 黄新艺. 超高性能砂浆砌体短柱轴压试验[J]. 交通运输工程学报, 2022, 22(1): 93-102. doi: 10.19818/j.cnki.1671-1637.2022.01.007
引用本文: 黄卿维, 廖妙星, 陈宝春, 卢绍斌, 刘君平, 李聪, 黄文金, 黄新艺. 超高性能砂浆砌体短柱轴压试验[J]. 交通运输工程学报, 2022, 22(1): 93-102. doi: 10.19818/j.cnki.1671-1637.2022.01.007
HUANG Qing-wei, LIAO Miao-xing, CHEN Bao-chun, LU Shao-bin, LIU Jun-ping, LI Cong, HUANG Wen-jin, HUANG Xin-yi. Axial compression test of masonry short columns with ultra-high performance mortar[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 93-102. doi: 10.19818/j.cnki.1671-1637.2022.01.007
Citation: HUANG Qing-wei, LIAO Miao-xing, CHEN Bao-chun, LU Shao-bin, LIU Jun-ping, LI Cong, HUANG Wen-jin, HUANG Xin-yi. Axial compression test of masonry short columns with ultra-high performance mortar[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 93-102. doi: 10.19818/j.cnki.1671-1637.2022.01.007

超高性能砂浆砌体短柱轴压试验

doi: 10.19818/j.cnki.1671-1637.2022.01.007
基金项目: 

国家自然科学基金项目 51878178

福建省自然科学基金项目 2019J01231

福建省土木工程多灾害防治重点实验室开放课题 MPMC-2021001

福建省交通运输科技项目 201905

详细信息
    作者简介:

    黄卿维(1982-),男,福建惠安人,福州大学副研究员,工学博士,从事超高性能混凝土、组合结构、大跨度拱桥等研究

  • 中图分类号: U448.33

Axial compression test of masonry short columns with ultra-high performance mortar

Funds: 

National Natural Science Foundation of China 51878178

Natural Science Foundation of Fujian Province 2019J01231

Opening Project of Fujian Provincial Key Laboratory on Multi-Disasters Prevention and Mitigation in Civil Engineering MPMC-2021001

Transportation Science and Technology Project of Fujian Province 201905

More Information
  • 摘要: 为改善砌体柱的受力性能,提出了采用新型超高性能砂浆(UHPM)的砌体柱(UMC),以烧结砖和混凝土砖为研究对象,分别进行了2组UMC的轴压试验,通过与传统砂浆砌体柱(MC)进行对比,探讨了UMC轴压受力机理与破坏模式,评估了现行规范关于砌体轴压承载力计算公式对UMC的适用性,提出了UMC轴压承载力预测公式。研究结果表明:UMC与MC的受力全过程相似,均经历了裂缝前受力阶段、裂缝开展阶段和破坏阶段;但UMC的初裂荷载远高于MC的初裂荷载,烧结砖与混凝土砖UMC分别为相应MC的2.36倍和2.45倍,且都大于MC的极限荷载;UMC与MC均因砌块破坏而丧失承载力,MC的破坏表现出明显的脆性,裂缝主要发展于砂浆与砌块接触面,而UMC的破坏表现出较好的延性,砌块的压碎程度远大于MC;与MC相比,UMC中砂浆不再是一个薄弱环节,UHPM对砌块的横向变形起约束作用,可显著提高砌体柱的承载力,烧结砖和混凝土砖UMC抗压承载力分别为MC的1.74倍和2.00倍,表明UHPM在砌体结构中的应用具有相当的可行性;采用现行规范中的MC强度计算公式将高估UMC的承载力,提出的UMC强度计算公式同时考虑了砌块的强度与UHPM对砌块约束作用。

     

  • 图  1  烧结砖砌体试件尺寸(单位:mm)

    Figure  1.  Dimensions of fired brick masonry specimens (unit: mm)

    图  2  烧结砖抗压强度测试

    Figure  2.  Compressive strength test of fired brick

    图  3  混凝土砖砌体短柱尺寸(单位:mm)

    Figure  3.  Dimensions of concrete brick masonry short columns (unit: mm)

    图  4  混凝土砖抗压强度测试

    Figure  4.  Compressive strength test of concrete brick

    图  5  试验装置

    Figure  5.  Testset Gup

    图  6  混凝土砖砌体短柱荷载-位移曲线

    Figure  6.  Load-displacement curves of concrete brick masonry short columns

    图  7  CB-UMC-3破坏形态

    Figure  7.  Failure patterns of CB-UMC-3

    图  8  CB-MC-2破坏形态

    Figure  8.  Failure patterns of CB-MC-2

    图  9  混凝土砖砌体短柱应力-应变曲线

    Figure  9.  Stress-strain curves of concrete brick masonry short columns

    表  1  UHPM配合比

    Table  1.   UHPM mixture ratios

    试件 水胶比 水泥 硅灰 闽江河砂 减水剂
    烧结砖砌体 0.16 1 0.3 1.2 0.025
    混凝土砖砌体 0.14
    下载: 导出CSV

    表  2  普通砂浆配合比

    Table  2.   Conventional mortar mixture ratios

    试件 水胶比 水泥 闽江河砂
    烧结砖砌体 1.20 1 5.20
    混凝土砖砌体 0.91 4.56
    下载: 导出CSV

    表  3  烧结砖砌体试件主要参数

    Table  3.   Main parameters of fired brick masonry specimens

    试件编号 截面长度/mm 截面宽度/mm 面积/mm2
    FB-MC-1 327 232 75 864
    FB-MC-2 330 230 75 900
    FB-MC-3 328 233 76 424
    FB-UMC-1 333 232 77 256
    FB-UMC-2 329 229 75 341
    FB-UMC-3 332 231 76 692
    下载: 导出CSV

    表  4  烧结砖、UHPM与普通砂浆的抗压强度

    Table  4.   Compressive strengths of fired brick, UHPM and conventional mortar

    项目 平均抗压强度/MPa 变异系数
    烧结砖砌块 7.78 0.044
    UHPM 105.00 0.040
    普通砂浆 10.93 0.014
    下载: 导出CSV

    表  5  混凝土砖砌体短柱主要参数

    Table  5.   Main parameters of concrete brick masonry short columns

    试件编号 截面长度/mm 截面宽度/mm 面积/mm2
    1/4 1/2 3/4 平均 1/4 1/2 3/4 平均
    CB-MC-1 365 366 367 366 240 240 240 240 87 840
    CB-MC-2 365 365 365 365 240 240 240 240 87 600
    CB-MC-3 368 371 369 369 240 240 240 240 88 560
    CB-UMC-1 379 368 367 368 240 241 240 240 88 320
    CB-UMC-2 378 375 376 376 255 245 240 245 92 120
    CB-UMC-3 372 371 370 371 241 240 240 240 89 040
    下载: 导出CSV

    表  6  混凝土砖、UHPM与普通砂浆的抗压强度

    Table  6.   Compressive strengths of concrete brick, UHPM and conventional mortar

    项目 平均抗压强度/MPa 变异系数
    混凝土砖砌块 24.10 0.089
    UHPM 159.92 0.081
    普通砂浆 16.00 0.045
    下载: 导出CSV

    表  7  试件抗压强度试验值

    Table  7.   Experimental values of compressive strengths of specimens

    组别 砂浆类型 试件编号 初裂荷载/kN 极限荷载/kN 初裂荷载/极限荷载 实测强度/MPa 平均值/MPa
    第1组 普通砂浆 FB-MC-1 380 739 0.514 9.74 10.60
    FB-MC-2 400 847 0.472 11.16
    FB-MC-3 370 832 0.444 10.89
    超高性能砂浆 FB-UMC-1 700 1 539 0.455 19.92 18.46
    FB-UMC-2 930 1 202 0.773 15.96
    FB-UMC-3 1 100 1 495 0.736 19.49
    第2组 普通砂浆 CB-MC-1 750 1 426 0.526 16.23 15.10
    CB-MC-2 700 1 231 0.569 14.07
    CB-MC-3 750 1 349 0.556 15.00
    超高性能砂浆 CB-UMC-1 1 800 2 719 0.662 30.78 30.37
    CB-UMC-2 1 850 2 600 0.712 28.22
    CB-UMC-3 1 850 2 858 0.647 32.10
    下载: 导出CSV

    表  8  UMC抗压强度计算值与实测值的比较

    Table  8.   Comparison of calculated and measured compressive strengths of UMC

    试件编号 砌块强度/MPa 砂浆强度/MPa 实测强度/MPa 计算强度/MPa 实测值与计算值的比值
    FB-UMC-1 7.78 105.00 19.90 18.50 1.08
    FB-UMC-2 16.00 0.86
    FB-UMC-3 19.50 1.05
    CB-UMC-1 24.10 159.92 30.80 30.40 1.01
    CB-UMC-2 28.20 0.93
    CB-UMC-3 32.10 1.06
    下载: 导出CSV
  • [1] 苑振芳, 刘斌. 我国砌体结构的发展状况与展望[J]. 建筑结构, 1999, 29(10): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG199910002.htm

    YUAN Zhen-fang, LIU Bin. The state of development and suggestion on masonry structure in China[J]. Building Structure, 1999, 29(10): 9-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG199910002.htm
    [2] PODESTÀ S. A damage model for the analysis of the seismic response of monumental buildings[J]. Journal of Earthquake Engineering, 2005, 9(3): 419-444.
    [3] RADIVOJEVIC A, KURTOVIC-FOLIC N. Evolution of bricks and brick masonry in the early history of its use in the region of today's Serbia[J]. Journal of Materials in Civil Engineering, 2006, 18(5): 692-699. doi: 10.1061/(ASCE)0899-1561(2006)18:5(692)
    [4] SANDIN K. Mortars for masonry and rendering choice and application[J]. Building Issues, 1995, 9(3): 3-18.
    [5] VENU MADHAVA RAO K, VENKATARAMA REDDY B V, JAGADISH K S. Strength characteristics of stone masonry[J]. Materials and Structures, 1997, 30(4): 233-237. doi: 10.1007/BF02486181
    [6] 孙景江, 马强, 石宏彬, 等. 汶川地震高烈度区城镇房屋震害简介[J]. 地震工程与工程振动, 2008, 28(3): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200803001.htm

    SUN Jing-jiang, MA Qiang, SHI Hong-bin, et al. Building damage in cities and towns located in higher intensity areas during Wenchuan earthquake[J]. Journal of Earthquake Engineering and Engineering Vibration, 2008, 28(3): 7-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200803001.htm
    [7] 李碧雄, 谢和平, 邓建辉, 等. 汶川地震中房屋建筑震害特征及抗震设计思考[J]. 防灾减灾工程学报, 2009, 29(2): 224-230, 236. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200902021.htm

    LI Bi-xiong, XIE He-ping, DENG Jian-hui, et al. Characteristic analysis of performance and damage of buildings in Wenchuan earthquake and considerations in aseismic design of building[J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29(2): 224-230, 236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200902021.htm
    [8] 方圆, 陈兵. 玻璃纤维对磷酸镁水泥砂浆力学性能的增强作用及机理[J]. 材料导报, 2017, 31(24): 6-9, 39. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201724003.htm

    FANG Yuan, CHEN Bing. The enhancement and mechanism of glass fiber on mechanical properties of magnesium phosphate cement mortar[J]. Materials Review, 2017, 31(24): 6-9, 39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201724003.htm
    [9] 王培铭, 许绮, STARK J. 桥面用丁苯乳液改性水泥砂浆的力学性能[J]. 建筑材料学报, 2001, 4(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200101002.htm

    WANG Pei-ming, XU Qi, STARK J. Mechanical properties of styrene-butadiene emulsion modified cement mortar used for repair of bridge surface[J]. Journal of Building Materials, 2001, 4(1): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200101002.htm
    [10] 陈华光, 熊剑平. 三种乳液改性路用水泥修补砂浆力学性能研究[J]. 公路与汽运, 2005(2): 75-77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNQY200502030.htm

    CHEN Hua-guang, XIONG Jian-ping. Mechanical properties of three kinds of emulsion modified cement mortar for road repair[J]. Highways and Automotive Applications, 2005(2): 75-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNQY200502030.htm
    [11] 郑志伟, 龚爱民, 彭玉林. 丙烯酸酯共聚乳液改性水泥砂浆性能的试验研究[J]. 云南农业大学学报(自然科学), 2007, 22(3): 427-430. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDX200703026.htm

    ZHENG Zhi-wei, GONG Ai-min, PENG Yu-lin. Experimental study of performance of propylene diethylene glycol dinitrate copolymerization emulsion modified cement mortar[J]. Journal of Yunnan Agricultural University (Natural Science Edition), 2007, 22(3): 427-430. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YNDX200703026.htm
    [12] 易伟建, 农金龙, 黄政宇, 等. 聚合物乳液改性砂浆的长期粘结性能[J]. 硅酸盐通报, 2011, 30(4): 938-942, 949. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201104041.htm

    YI Wei-jian, NONG Jin-long, HUANG Zheng-yu, et al. Research on long-time interfacial bonding performance of polymer modified cement-based mortars[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(4): 938-942, 949. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201104041.htm
    [13] 赵维, 李东旭, 李清海. 聚合物改性砂浆综述[J]. 材料导报, 2010, 24(11): 136-140. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201011037.htm

    ZHAO Wei, LI Dong-xu, LI Qing-hai. Review of polymer modified mortar[J]. Materials Review, 2010, 24(11): 136-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201011037.htm
    [14] 王超, 刘兆爽, 赵文杰. 聚合物改性水泥基材料的机理研究进展[J]. 硅酸盐通报, 2017, 36(4): 1254-1257, 1265. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201402034.htm

    WANG Chao, LIU Zhao-shuang, ZHAO Wen-jie. Research development on mechanism of polymer modified cement based materials[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(4): 1254-1257, 1265. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201402034.htm
    [15] LI Cong, CHEN Bao-chun, SU Jia-zhan, et al. Experimental study of ultra-high performance mortar masonry short columns under axial loads[C]//TOUTLEMONDE F, RESPLENDINO J. Proceedings of the AFGC-ACI-fib-RILEM International Conference on Ultra-High Performance Fibre-Reinforced Concrete. Paris: RILEM Publication, 2017: 605-614.
    [16] 陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1-24. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201403002.htm

    CHEN Bao-chun, JI Tao, HUANG Qing-wei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201403002.htm
    [17] 陈宝春, 杨简, 黄卿维, 等. 超高性能混凝土形状与尺寸效应分析[J]. 福州大学学报(自然科学版), 2019, 47(3): 391-397. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201903018.htm

    CHEN Bao-chun, YANG Jian, HUANG Qing-wei, et al. Analysis of shape and size effect of ultra-high performance concrete[J]. Journal of Fuzhou University (Natural Science Edition), 2019, 47(3): 391-397. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201903018.htm
    [18] 陈宝春, 杨简, 吴香国, 等. UHPC力学性能的多指标分级[J]. 中国公路学报, 2021, 34(8): 23-34.

    CHEN Bao-chun, YANG Jian, WU Xiang-guo, et al. Multi-indicators classification of UHPC mechanical properties[J]. China Journal of Highway and Transport, 2021, 34(8): 23-34. (in Chinese)
    [19] 杜任远, 黄卿维, 陈宝春. 活性粉末混凝土桥梁应用与研究[J]. 世界桥梁, 2013, 41(1): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201301016.htm

    DU Ren-yuan, HUANG Qing-wei, CHEN Bao-chun. Application and study of reactive powder concrete to bridge engineering[J]. World Bridges, 2013, 41(1): 69-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201301016.htm
    [20] 黄卿维, 杜任远, 陈宝春. 超高性能混凝土在桥梁结构中的应用[C]//中国土木工程学会. 第九届全国高强与高性能混凝土学术交流会论文集. 福州: 中国土木工程学会, 2014: 342-349.

    HUANG Qing-wei, DU Ren-yuan, CHEN Bao-chun. Application of ultra high performance concrete in bridge structure[C]//China Civil Engineering Society. Proceeding of the Ninth National Conference on High Strength and High Performance Concrete. Fuzhou: China Civil Engineering Society, 2014: 342-349. (in Chinese)
    [21] 邵旭东, 樊伟, 黄政宇. 超高性能混凝土在结构中的应用[J]. 土木工程学报, 2021, 54(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202101001.htm

    SHAO Xu-dong, FAN Wei, HUANG Zheng-yu. Application of ultra-high-performance concrete in engineering structures[J]. China Civil Engineering Journal, 2021, 54(1): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202101001.htm
    [22] 赵筠, 廉慧珍. 关于超高性能混凝土(UHPC)的问答[J]. 混凝土世界, 2016(4): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-JZSJ201604025.htm

    ZHAO Yun, LIAN Hui-zhen. Questions and answers to ultra-high performance concrete (UHPC)[J]. China Concrete, 2016(4): 98-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZSJ201604025.htm
    [23] RIDDINGTON J R, GHAZALI M Z. Hypothesis for shear failure in masonry joints[J]. Proceedings of the Institution of Civil Engineers, 1990, 89(1): 89-102.
    [24] ALI S S, PAGE A W. Finite element model for masonry subjected to concentrated loads[J]. Journal of Structural Engineering, 1988, 114(8): 1761-1784.
    [25] 杜任远, 陈宝春. 活性粉末混凝土拱极限承载力试验研究[J]. 工程力学, 2013, 30(5): 42-48.

    DU Ren-yuan, CHEN Bao-chun. Experimental research on the ultimate load capacity of reactive powder concrete arches[J]. Engineering Mechanics, 2013, 30(5): 42-48. (in Chinese)
  • 加载中
图(9) / 表(8)
计量
  • 文章访问数:  724
  • HTML全文浏览量:  198
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回