留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粗-中-细集料配比设计与空隙率等值线分析

刘玉 周愉惠 黄兹润 马加集 汪海年 尤占平

刘玉, 周愉惠, 黄兹润, 马加集, 汪海年, 尤占平. 粗-中-细集料配比设计与空隙率等值线分析[J]. 交通运输工程学报, 2022, 22(4): 89-101. doi: 10.19818/j.cnki.1671-1637.2022.04.006
引用本文: 刘玉, 周愉惠, 黄兹润, 马加集, 汪海年, 尤占平. 粗-中-细集料配比设计与空隙率等值线分析[J]. 交通运输工程学报, 2022, 22(4): 89-101. doi: 10.19818/j.cnki.1671-1637.2022.04.006
LIU Yu, ZHOU Yu-hui, HUANG Zi-run, MA Jia-ji, WANG Hai-nian, YOU Zhan-ping. Design of coarse-medium-fine aggregates proportion and analysis of air void contour curves[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 89-101. doi: 10.19818/j.cnki.1671-1637.2022.04.006
Citation: LIU Yu, ZHOU Yu-hui, HUANG Zi-run, MA Jia-ji, WANG Hai-nian, YOU Zhan-ping. Design of coarse-medium-fine aggregates proportion and analysis of air void contour curves[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 89-101. doi: 10.19818/j.cnki.1671-1637.2022.04.006

粗-中-细集料配比设计与空隙率等值线分析

doi: 10.19818/j.cnki.1671-1637.2022.04.006
基金项目: 

国家自然科学基金项目 51978074

国家重点研发计划 2021YFB2601000

详细信息
    作者简介:

    刘玉(1979-),男,河南周口人,长安大学教授,工学博士,从事路面材料研究

    通讯作者:

    刘玉(1979-),男,河南周口人,长安大学教授,工学博士

  • 中图分类号: U414

Design of coarse-medium-fine aggregates proportion and analysis of air void contour curves

Funds: 

National Natural Science Foundation of China 51978074

National Key Research and Development Program of China 2021YFB2601000

More Information
  • 摘要: 为了使矿质混合料达到工程要求,合理搭配不同粒径的集料颗粒,分析了矿质混合料中的集料粒径分布范围,把集料颗粒划分为粗、中和细三档,建立以粗料占比为横轴、中料占比为纵轴、细料占比为斜轴的三角坐标系,提出一种基于三角坐标系的粗、中和细集料配比设计方法;以粒径比和初始粒径为指标,建立粗、中和细料的27种组合,每种组合选择36种占比,通过离散元数值仿真试验,计算了972组虚拟试件的空隙率;构建了不同粒径比的空隙率等值曲线图,研究了粗、中、细集料组合及其占比对空隙率的影响规律。分析结果表明:初始粒径对空隙率的影响较小;粒径比对空隙率影响很大,随着粒径比增大空隙率逐渐减小;空隙率等值线具有明显的规律,随着粒径比的增大,等值线越来越密,区域性规律也越来越显著;初始粒径和粒径比作为混合料配比的2种指标,对空隙率影响程度不同,后者可作为主要指标;粗、中和细料的体积占比对空隙率的影响在三角坐标系中呈等值线变化,具有区域特征,在三角坐标系的三个顶点附近空隙率出现最大值,横轴中点附近空隙率出现最小值,且斜轴两侧空隙率具有明显差异,最大约为2.8%,斜轴以下空隙率相对较小;空隙率等值线的凸点指向纵轴顶点,凹口指向横轴中部,且等值线疏密程度可以表征空隙率差异程度。

     

  • 图  1  集料形态参数

    Figure  1.  Morphological parameters of aggregates

    图  2  基于CMF配比的路面混合料组成结构

    Figure  2.  Composition structure of pavement mixture based on CMF proportion

    图  3  基于CMF配比的混合料拌和过程

    Figure  3.  Mixing process of mixture based on CMF proportion

    图  4  CMF配比的三角坐标系

    Figure  4.  Triangular coordinate system of CMF proportion

    图  5  CMF集料配比-空隙等值曲线

    Figure  5.  Contour curves of CMF aggregate proportion-air void ratio

    图  6  CMF颗粒各组合方案的平均空隙率

    Figure  6.  Average void ratio of each CMF combination scheme

    图  7  CMF颗粒配比-平均空隙等值曲线

    Figure  7.  Contour curves of CMF aggregate proportion-average air void ratio

    图  8  粒径比为2.0时CMF颗粒配比-空隙等值曲线

    Figure  8.  Contour curves of CMF-aggregate proportion-air void ratio when particle size ratio is 2.0

    表  1  集料空隙相关特征

    Table  1.   Related features of aggregate voids

    集料类型 空隙填充能力 空隙形成能力 空隙可填充性
    C料 ×
    M料
    F料 ×
    下载: 导出CSV

    表  2  基本体积参数与代码

    Table  2.   Basic volumetric properties and codes

    材料类型 堆积体积 松装空隙体积 填充率 剩余空隙体积
    C料 Vc Vac Fcm(M料填Vac)
    Fcf(F料填Vac)
    Fcb(B料填Vac)
    Vlac
    M料 Vm Vam Fmf(F料填Vam)
    Fmb(B料填Vam)
    Vlam
    F料 Vf Vaf Ffb(B料填Vaf) Vlaf
    B料 有效体积为Vb 0
    混合料 压实成型后体积为Vmix Vla
    下载: 导出CSV

    表  3  基于粒径比与初始粒径的原材料选择示例1

    Table  3.   Raw material selection example 1 based on particle size ratios and initial particle sizes

    集料类型 粒径比值 粒径分布范围/mm
    F γF 8.0 0.009 375~0.075
    M γM 32.0 0.075~2.36
    C γC 8.0 2.36~19
    下载: 导出CSV

    表  4  基于粒径比与初始粒径的原材料选择示例2

    Table  4.   Raw material selection example 2 based on particle size ratios and initial particle sizes

    集料类型 粒径比值 粒径分布范围/mm
    Ff γFf 2.0 0.009 375~0.018 75
    Fm γFm 2.0 0.018 75~0.037 5
    Fc γFc 2.0 0.037 5~0.075
    下载: 导出CSV

    表  5  基于粒径比与初始粒径的原材料选择示例3

    Table  5.   Raw material selection example 3 based on particle size ratios and initial particle sizes

    集料类型 粒径比值 粒径分布范围/mm
    Mf γMf 2.0 0.075~0.15
    Mm γMm 4.0 0.15~0.6
    Mc γMc 4.0 0.6~2.36
    下载: 导出CSV

    表  6  基于粒径比与初始粒径的原材料选择示例4

    Table  6.   Raw material selection example 4 based on particle size ratios and initial particle sizes

    集料类型 粒径比值 粒径分布范围/mm
    Cf γCf 2.0 2.36~4.75
    Cm γCm 2.0 4.75~9.5
    Cc γCc 2.0 9.5~19
    下载: 导出CSV

    表  7  离散元模型参数

    Table  7.   Discrete element model parameters

    类别 参数 取值
    球型颗粒 密度/(kg·m-3) 2 650
    球形颗粒接触 模量/Pa 5.0× 108
    刚度比 1.4
    摩擦因数 1.0
    法向临界阻尼比 1.0
    球与墙接触 法向刚度/Pa 1.0 × 107
    切向刚度/Pa 0
    摩擦因数 0
    法向临界阻尼比 1
    下载: 导出CSV

    表  8  集料粒径范围与CMF组合方案

    Table  8.   Ranges of aggregate particle sizes and CMF combination schemes

    初始粒径/mm 粒径比
    1.1 1.2 1.3 1.4 1.5 1.6 1.8 1.9 2.0
    2.36
    4.75
    9.5
    13.2
    16
    19
    26.5
    31.5
    下载: 导出CSV
  • [1] 张登良, 郝培文, 徐涛. 空隙率对沥青混合料技术性能的影响[J]. 石油沥青, 1996, 10(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-OILE601.001.htm

    ZHANG Deng-liang, HAO Pei-wen, XU Tao. influence of void content of asphalt mixture on its technical characteristics[J]. Petroleum Asphalt, 1996, 10(1): 7-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-OILE601.001.htm
    [2] 韩海峰, 何桂平, 吕伟民. 级配对混合料压实性能和车辙稳定性的影响[J]. 同济大学学报(自然科学版), 2004, 32(9): 1153-1157, 1167. doi: 10.3321/j.issn:0253-374X.2004.09.008

    HAN Hai-feng, HE Gui-ping, LU Wei-min. Effects of gradations on compaction property and rutting sensitivity of hot mix asphalt[J]. Journal of Tongji University (Natural Science), 2004, 32(9): 1153-1157, 1167. (in Chinese) doi: 10.3321/j.issn:0253-374X.2004.09.008
    [3] 赵战利, 张争奇, 胡长顺. 集料级配对沥青路面抗滑性能的影响[J]. 长安大学学报(自然科学版), 2005, 25(1): 6-9. doi: 10.3321/j.issn:1671-8879.2005.01.002

    ZHAO Zhan-li, ZHANG Zheng-qi, HU Chang-shun. Influence of gradation on anti-skidding performance of asphalt pavement[J]. Journal of Chang'an University (Natural Science Edition), 2005, 25(1): 6-9. (in Chinese) doi: 10.3321/j.issn:1671-8879.2005.01.002
    [4] 李立寒, 麻旭荣. 级配离析沥青混合料性能的试验研究[J]. 同济大学学报(自然科学版), 2007, 35(12): 1622-1626. doi: 10.3321/j.issn:0253-374X.2007.12.008

    LI Li-han, MA Xu-rong. Influence research of gradation segregation on performance of asphalt mixture[J]. Journal of Tongji University (Natural Science), 2007, 35(12): 1622-1626. (in Chinese) doi: 10.3321/j.issn:0253-374X.2007.12.008
    [5] GUARIN A, ROQUE R, KIM S, et al. Disruption factor of asphalt mixtures[J]. International Journal of Pavement Engineering, 2013, 14(5): 472-485. doi: 10.1080/10298436.2012.727992
    [6] 彭余华, 胡佳寅, 胡顺峰. AC-25粒度分布对级配离析的影响[J]. 交通运输工程学报, 2014, 14(5): 1-7, 18. doi: 10.3969/j.issn.1671-1637.2014.05.001

    PENG Yu-hua, HU Jia-yin, HU Shun-feng. Influence of AC-25 particle size distribution on gradation segregation[J]. Journal of Traffic and Transportation Engineering, 2014, 14(5): 1-7, 18. (in Chinese) doi: 10.3969/j.issn.1671-1637.2014.05.001
    [7] 陈忠达, 袁万杰, 郑东启. 级配理论应用研究[J]. 重庆交通学院学报, 2005, 24(4): 44-48. doi: 10.3969/j.issn.1674-0696.2005.04.011

    CHEN Zhong-da, YUAN Wan-jie, ZHENG Dong-qi. Study on the application of grading theory[J]. Journal of Chongqing Jiaotong University, 2005, 24(4): 44-48. (in Chinese) doi: 10.3969/j.issn.1674-0696.2005.04.011
    [8] 彭波. 基于变i法理论的级配组成设计方法[J]. 武汉理工大学学报(交通科学与工程版), 2005, 29(5): 751-754. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ200505028.htm

    PENG Bo. Gradation design method based on method of i change[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2005, 29(5): 751-754. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ200505028.htm
    [9] 陈明辉. 基于密度曲线与细观结构的沥青混合料稳定状态研究[D]. 广州: 广州大学, 2018.

    CHEN Ming-hui. Research on asphalt mixture stability based on density curve and meso-structure[D]. Guangzhou: Guangzhou University, 2018. (in Chinese)
    [10] 陈忠达, 袁万杰, 高春海. 多级嵌挤密实级配设计方法研究[J]. 中国公路学报, 2006, 19(1): 32-37. doi: 10.3321/j.issn:1001-7372.2006.01.007

    CHEN Zhong-da, YUAN Wan-jie, GAO Chun-hai. Research on design method of multilevel dense built-in gradation[J]. China Journal of Highway and Transport, 2006, 19(1): 32-37. (in Chinese) doi: 10.3321/j.issn:1001-7372.2006.01.007
    [11] 王磊, 马骉, 寇军平. 嵌锁密实水泥混凝土粗集料级配组成设计方法[J]. 交通运输工程学报, 2011, 11(5): 12-17. doi: 10.19818/j.cnki.1671-1637.2011.05.003

    WANG Lei, MA Biao, KOU Jun-ping. Gradation design method of coarse aggregate for interlocking-dense cement concrete[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 12-17. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2011.05.003
    [12] 宋金华, 姬玉平, 刘志蕾, 等. 高性能RAP料配合比设计[J]. 重庆交通大学学报(自然科学版), 2017, 36(6): 38-47. doi: 10.3969/j.issn.1674-0696.2017.06.06

    SONG Jin-hua, JI Yu-ping, LIU Zhi-lei, et al. Mixture proportion design of high-performance RAP materials[J]. Journal of Chongqing Jiaotong University (Natural Science), 2017, 36(6): 38-47. (in Chinese) doi: 10.3969/j.issn.1674-0696.2017.06.06
    [13] 黄继成, 黄彭. 沥青混合料集料分形和性状相关性研究[J]. 同济大学学报(自然科学版), 2006, 34(12): 1632-1636. doi: 10.3321/j.issn:0253-374X.2006.12.015

    HUANG Ji-cheng, HUANG Peng. Relativity study on aggregates fractal and mechanics indexes of asphalt mixture[J]. Journal of Tongji University (Natural Science), 2006, 34(12): 1632-1636. (in Chinese) doi: 10.3321/j.issn:0253-374X.2006.12.015
    [14] 杨瑞华, 许志鸿, 张超, 等. 沥青混合料分形级配理论[J]. 同济大学学报(自然科学版), 2008, 36(12): 1642-1646. doi: 10.3321/j.issn:0253-374X.2008.12.009

    YANG Rui-hua, XU Zhi-hong, ZHANG Chao, et al. Fractal gradation theory of asphalt mixture[J]. Journal of Tongji University (Natural Science), 2008, 36(12): 1642-1646. (in Chinese) doi: 10.3321/j.issn:0253-374X.2008.12.009
    [15] 周兴林, 李庆丰, 肖神清. 基于多重分形的沥青混合料空隙分布特征分析[J]. 重庆交通大学学报(自然科学版), 2018, 37(12): 29-35. doi: 10.3969/j.issn.1674-0696.2018.12.05

    ZHOU Xing-lin, LI Qing-feng, XIAO Shen-qing. Voids distribution characteristics of asphalt mixture based on multifractal theory[J]. Journal of Chongqing Jiaotong University (Natural Science), 2018, 37(12): 29-35. (in Chinese) doi: 10.3969/j.issn.1674-0696.2018.12.05
    [16] YOU Zhan-ping, LIU Yu, DAI Qing-li. Three-dimensional microstructural-based discrete element viscoelastic modeling of creep compliance tests for asphalt mixtures[J]. Journal of Materials in Civil Engineering, 2011, 23 (1): 79-87. doi: 10.1061/(ASCE)MT.1943-5533.0000038
    [17] 陈俊, 黄晓明. 采用离散元方法评价集料的骨架结构[J]. 东南大学学报(自然科学版), 2012, 42(4): 761-765. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201204036.htm

    CHEN Jun, HUANG Xiao-ming. Evaluation of aggregate skeleton structure using the discrete element method[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(4): 761-765. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201204036.htm
    [18] YU Hua-nan, SHEN Shi-hui. Impact of aggregate packing on dynamic modulus of hot mix asphalt mixtures using three-dimensional discrete element method[J]. Construction and Building Materials, 2012, 26 (1): 302-309. doi: 10.1016/j.conbuildmat.2011.06.025
    [19] LIU Peng-fei, HU Jing, WANG Da-wei, et al. Modelling and evaluation of aggregate morphology on asphalt compression behavior[J]. Construction and Building Materials, 2017, 133: 196-208. doi: 10.1016/j.conbuildmat.2016.12.041
    [20] 邢超. 沥青混合料骨架填充体系细观结构及应力应变传递机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    XING Chao. Mesostructure and stress strain transfer mechanism of skeleton filling system of asphalt mixture[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [21] 李苗苗. 沥青混合料的空隙率预估与虚拟配比研究[D]. 西安: 长安大学, 2020.

    LI Miao-miao. Porosity prediction and virtual gradation design of asphalt mixture[D]. Xi'an: Chang'an University, 2020. (in Chinese)
    [22] LIU Yu, LI Miao-miao, SU Pei-feng, et al. Porosity prediction of granular materials through discrete element method and back propagation neural network algorithm[J]. Applied Sciences, 2020, 10(5), DOI: 10.3390/app10051693.
    [23] 裴建中, 张嘉林, 常明丰. 矿料级配对多孔沥青混合料空隙分布特性的影响[J]. 中国公路学报, 2010, 23(1): 1-6. doi: 10.3969/j.issn.1001-7372.2010.01.001

    PEI Jian-zhong, ZHANG Jia-lin, CHANG Ming-feng. Influence of mineral aggregate gradation on air void distribution characteristic of porous asphalt mixture[J]. China Journal of Highway and Transport, 2010, 23(1): 1-6. (in Chinese) doi: 10.3969/j.issn.1001-7372.2010.01.001
    [24] 郭乃胜, YOU Zhan-ping, 谭忆秋, 等. 基于CT技术的沥青混合料空隙率预测方法[J]. 中国公路学报, 2016, 29(8): 12-21, 42. doi: 10.3969/j.issn.1001-7372.2016.08.002

    GUO Nai-sheng, YOU Zhan-ping, TAN Yi-qiu, et al. Prediction method on volume of air voids of asphalt mixturesbBased on CT technique[J]. China Journal of Highway and Transport, 2016, 29(8): 12-21, 42. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.08.002
    [25] 徐慧宁, 石浩, 谭忆秋. 沥青混合料三维空隙形态特征评价方法及分析[J]. 中国公路学报, 2020, 33(10): 210-220. doi: 10.3969/j.issn.1001-7372.2020.10.015

    XU Hui-ning, SHI Hao, TAN Yi-qiu. Investigation and characterization of 3D void mesostructures in asphalt mixtures[J]. China Journal of Highway and Transport, 2020, 33(10): 210-220. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.10.015
    [26] ZHANG Yi-ning, CHENG Huai-lei, SUN Li-jun, et al. Determination of volumetric criteria for designing hard asphalt mixture[J]. Construction and Building Materials, 2021, 278, DOI: 10.1016/j.conbuildmat.2021.122243.
    [27] REN Jiao-long, XU Yin-shan, HUANG Jian-dong, et al. Gradation optimization and strength mechanism of aggregate structure considering macroscopic and mesoscopic aggregate mechanical behaviour in porous asphalt mixture[J]. Construction and Building Materials, 2021, 300, DOI: 10.1016/j.conbuildmat.2021.124262
    [28] ZHANG Wei-guang, SHEN Shi-hui, WU Sheng-hua, et al. Effects of in-place volumetric properties on field rutting and cracking performance of asphalt pavement[J]. Journal of Materials in Civil Engineering, 2019, 31 (8), DOI: 10.1061/(ASCE)MT.1943-5533.0002767.
    [29] 谭忆秋, 邢超, 任俊达, 等. 基于颗粒堆积理论的沥青混合料细观结构特性研究[J]. 中国公路学报, 2017, 30(7): 1-8. doi: 10.3969/j.issn.1001-7372.2017.07.001

    TAN Yi-qiu, XING Chao, REN Jun-da, et al. Research on mesostructured characteristics of asphalt mixture based on particle packing theory[J]. China Journal of Highway and Transport, 2017, 30(7): 1-8. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.07.001
    [30] 刘树堂, 曹卫东, 任晓刚, 等. Superpave体系级配设计关键技术分析与V_(MA)曲线预测[J]. 中国公路学报, 2015, 28(2): 8-13, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201502003.htm

    LIU Shu-tang, CAO Wei-dong, REN Xiao-gang, et al. Analysis of key issues about gradation design in Superpave system and VMA-curve prediction[J]. China Journal of Highway and Transport, 2015, 28(2): 8-13, 25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201502003.htm
    [31] 郝培文, 徐金枝, 周怀治. 应用贝雷法进行级配组成设计的关键技术[J]. 长安大学学报(自然科学版), 2004, 24(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200406001.htm

    HAO Pei-wen, XU Jin-zhi, ZHOU Huai-zhi. Key technologies of aggregate blending by Bailey method[J]. Journal of Chang'an University (Natural Science Edition), 2004, 24(6): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200406001.htm
    [32] 冯新军, 郝培文. 密级配沥青稳定碎石基层混合料级配设计方法[J]. 中国公路学报, 2009, 22(04): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200904007.htm

    FENG Xin-jun, HAO Pei-wen. Gradation design method of dense-graded asphalt stabilized macadam base[J]. China Journal of Highway and Transport, 2009, 22(4): 33-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200904007.htm
    [33] 陈泽宏. 沥青混合料不同配合比设计方法对比研究[D]. 长沙: 湖南大学, 2013.

    CHEN Ze-hong. A comparative study on different design methods for asphalt mixtures[D]. Changsha: Hunan University, 2013. (in Chinese)
    [34] LIU Yu, SU Pei-feng, LI Miao-miao, et al. Review on evolution and evaluation of asphalt pavement structures and materials[J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(5): 573-599. doi: 10.1016/j.jtte.2020.05.003
    [35] RADHAKRISHNAN V, RAMYA SRI M, REDDY K S. Sensitivity of rutting and moisture resistance of asphalt mixes to gradation and design air void content[J]. International Journal of Pavement Engineering, 2020, 21 (9): 1035-1043. doi: 10.1080/10298436.2018.1517875
    [36] 彭勇, 孙立军. 沥青混合料均匀性影响因素的研究[J]. 同济大学学报(自然科学版), 2006, 34(1): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200601011.htm

    PENG Yong, SUN Li-jun. Study on influence factors of homogeneity of asphalt mixture[J]. Journal of Tongji University (Natural Science), 2006, 34(1): 59-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200601011.htm
    [37] SHEN Shi-hui, YU Hua-nan. Analysis of aggregate gradation and packing for easy estimation of hot-mix-asphalt voids in mineral aggregate[J]. Journal of Materials in Civil Engineering, 2011, 23(5): 664-672.
    [38] 郝培文, 徐金枝, 肖曼, 等. 矿料间隙率标准研究进展[J]. 长安大学学报(自然科学版), 2008, 28(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200801005.htm

    HAO Pei-wen, XU Jin-zhi, XIAO Man, et al. Review on requirement of voids in mineral aggregates[J]. Journal of Chang'an University (Natural Science Edition), 2008, 28(1): 21-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200801005.htm
    [39] FANG Ming-jing, DAEWOOK P, JEAN LOUIS S, et al. Aggregate gradation theory, design and its impact on asphalt pavement performance: a review[J]. International Journal of Pavement Engineering, 2019, 20 (12): 1408-1424.
    [40] 王志祥, 李建阁, 张争奇. 集料形态对集料-沥青粘附及水稳定性的影响[J]. 建筑材料学报, 2021, 24(5): 1039-1047. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX202105020.htm

    WANG Zhi-xiang, LI Jian-ge, ZHANG Zheng-qi. Effects of aggregate morphological characteristics on adhesion of aggregate-asphalt and its moisture stability[J]. Journal of Building Materials, 2021, 24(5): 1039-1047. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX202105020.htm
    [41] 杜小婷, 汪海年. 基于图像分析的粗集料三维形态指标研究[J]. 公路, 2013, 58(8): 250-254. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201308063.htm

    DU Xiao-ting, WANG Hai-nian. A study on three-dimensional shape indexes of coarse aggregates based on image analysis[J]. Highway, 2013, 58(8): 250-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201308063.htm
    [42] 叶奋, 丁新慧. 基于数字图像处理的粗集料二维形态特征参数分析[J]. 上海公路, 2017(4): 82-85, 6. https://www.cnki.com.cn/Article/CJFDTOTAL-SHGL201704021.htm

    YE Fen, DING Xin-hui. Analysis of two-dimensional characteristic parameters of coarse aggregate based on digital image processing[J]. Shanghai Highways, 2017(4): 82-85, 6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHGL201704021.htm
    [43] 金灿, 李守国, 汪培松, 等. 基于X-ray CT图像的集料形状表征方法[J]. 交通科技与经济, 2018, 20(6): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-KJJJ201806013.htm

    JIN Can, LI Shou-guo, WANG Pei-song, et al. Preliminary study on aggregate shape characterization based on X-ray CT imaging[J]. Technology and Economy in Areas of Communications, 2018, 20(6): 66-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJJJ201806013.htm
    [44] 汪培松. 基于三维实体建模的集料形态学特征量化方法研究[D]. 合肥: 合肥工业大学, 2018.

    WANG Pei-song. Research on morphology quantification of aggregates based on 3D solid modeling[D]. Hefei: Hefei University of Technology, 2018. (in Chinese)
    [45] 袁海. 集料表观形态与沥青混合料性能相关性分析[J]. 盐城工学院学报(自然科学版), 2019, 32(3): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-YCGZ201903011.htm

    YUAN Hai. Analysis of correlation between aggregate apparent morphology and asphalt mixture performance[J]. Journal of Yancheng Institute of Technology (Natural Science Edition), 2019, 32(3): 64-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YCGZ201903011.htm
    [46] 郭慧敏. 粗集料形态对宽温度域下沥青混合料高低温性能影响[J]. 中外公路, 2021, 41(2): 281-285. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL202102056.htm

    GUO Hui-min. Influence of coarse aggregate morphology on high and low temperature performance of asphalt mixture in wide temperature range[J]. Journal of China and Foreign Highway, 2021, 41(2): 281-285. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL202102056.htm
    [47] 徐金枝, 郝培文, 肖庆一. 基于三级分散系的沥青混合料配合比设计方法[J]. 长安大学学报(自然科学版), 2007, 27(3): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200703002.htm

    XU Jin-zhi, HAO Pei-wen, XIAO Qing-yi. Mix design method of asphalt mixtures based on three-level dispersed system[J]. Journal of Chang'an University (Natural Science Edition), 2007, 27(3): 9-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200703002.htm
    [48] 徐金枝. 基于三级分散体系的沥青混合料配合比设计方法研究[D]. 西安: 长安大学, 2004.

    XU Jin-zhi. Mix design method research of asphalt mixtures based on three-level dispersed system[D]. Xi'an: Chang'an University, 2004. (in Chinese)
    [49] 马晓晖, 李立寒. 利用离散元模型分析沥青混合料的空隙特性[J]. 同济大学学报(自然科学版), 2013, 41(12): 1830-1836. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201312011.htm

    MA Xiao-hui, LI Li-han. Analysis of void characteristics of asphalt mixtures with discrete element method model[J]. Journal of Tongji University (Natural Science), 2013, 41(12): 1830-1836. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201312011.htm
    [50] 吴文亮, 王端宜, 张肖宁, 等. 沥青混合料级配的体视学推测方法[J]. 中国公路学报, 2009, 22(5): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200905004.htm

    WU Wen-liang, WANG Duan-yi, ZHANG Xiao-ning, et al. Stereology method of estimating gradation of asphalt mixtures[J]. China Journal of Highway and Transport, 2009, 22(5): 29-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200905004.htm
    [51] 凌天清, 杨云龙, 赵城, 等. 基于PFC3D的低空隙率沥青混合料设计研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(6): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT202006012.htm

    LING Tian-qing, YANG Yun-long, ZHAO Cheng, et al. Design of asphalt mixture with low voidage based on PFC3D[J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(6): 73-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT202006012.htm
    [52] 张垚. 基于PFC3D的沥青混合料虚拟试验研究[D]. 南京: 东南大学, 2015.

    ZHANG Yao. Research on virtual tests of asphalt mixture based on PFC3D[D]. Nanjing: Southeast University, 2015. (in Chinese)
    [53] CHEN Jing-song, HUANG Bao-shan, SHU Xiang. Air-void distribution analysis of asphalt mixture using discrete element method[J]. Journal of Materials in Civil Engineering, 2013, 25(10): 1375-1385.
  • 加载中
图(8) / 表(8)
计量
  • 文章访问数:  565
  • HTML全文浏览量:  135
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回