留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水泥路面接缝传力杆周围混凝土损伤塑性分析

周正峰 罗君豪 康玉峰

周正峰, 罗君豪, 康玉峰. 水泥路面接缝传力杆周围混凝土损伤塑性分析[J]. 交通运输工程学报, 2022, 22(4): 117-127. doi: 10.19818/j.cnki.1671-1637.2022.04.008
引用本文: 周正峰, 罗君豪, 康玉峰. 水泥路面接缝传力杆周围混凝土损伤塑性分析[J]. 交通运输工程学报, 2022, 22(4): 117-127. doi: 10.19818/j.cnki.1671-1637.2022.04.008
ZHOU Zheng-feng, LUO Jun-hao, KANG Yu-feng. Damaged plastic analysis of concrete around dowel bars at joint in cement pavement[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 117-127. doi: 10.19818/j.cnki.1671-1637.2022.04.008
Citation: ZHOU Zheng-feng, LUO Jun-hao, KANG Yu-feng. Damaged plastic analysis of concrete around dowel bars at joint in cement pavement[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 117-127. doi: 10.19818/j.cnki.1671-1637.2022.04.008

水泥路面接缝传力杆周围混凝土损伤塑性分析

doi: 10.19818/j.cnki.1671-1637.2022.04.008
基金项目: 

国家自然科学基金项目 51878575

详细信息
    作者简介:

    周正峰(1981-),男,湖北荆州人,西南交通大学副教授,工学博士,从事道路与机场工程研究

  • 中图分类号: U416.2

Damaged plastic analysis of concrete around dowel bars at joint in cement pavement

Funds: 

National Natural Science Foundation of China 51878575

More Information
    Author Bio:

    ZHOU Zheng-feng(1981-), male, associate professor, PhD, zhouzf126@126.com

  • 摘要: 为揭示水泥路面接缝传力杆周围混凝土的受力特性与损伤机理,基于ABAQUS有限元软件,介绍了混凝土损伤塑性(CDP)模型及其参数确定方法,应用CDP模型模拟了混凝土试件单轴拉伸和压缩试验,通过对比模型试验结果验证了CDP模型参数的准确性;在此基础上,建立了接缝设置传力杆的水泥路面三维有限元模型,分析了在不同轴载作用下水泥路面接缝传力杆周围混凝土的塑性应变、损伤因子和等效应力的分布和发展规律,对比了采用CDP模型与混凝土弹性模型时传力杆周围混凝土的应力差异。分析结果表明:对于混凝土单轴拉伸、压缩试件,基于CDP模型的应力-变形全曲线模拟结果均与试验结果一致,说明CDP模型及其参数确定方法准确;对于接缝设传力杆的水泥路面,当荷载作用在接缝传力杆黏结端上方板边时,传力杆黏结端混凝土的受力最为不利;随着轴载的增大,传力杆黏结端底部混凝土率先发生损伤塑性,等效应力逐渐减小;当轴载从100 kN增大至250 kN时,传力杆周围混凝土塑性区范围从底部135°~225°扩展至60°~300°,底部150°~210°范围内混凝土发生完全损伤塑性而退出工作,等效应力趋于0,应力重分布导致更多的荷载由传力杆两侧和上部混凝土承担;若传力杆周围混凝土采用弹性模型,传力杆底部混凝土等效应力将不断增大而超过极限强度,因此,分析传力杆周围混凝土应力集中问题建议采用CDP模型。

     

  • 图  1  混凝土单轴受力状态下的应力-应变曲线

    Figure  1.  Stress-strain curves of concrete under uniaxial force

    图  2  混凝土试件应力-非弹性应变和损伤因子-非弹性应变曲线

    Figure  2.  Stress-inelastic stain and damage factor-inelastic stain curves of concrete specimens

    图  3  数值模拟与试验应力-变形曲线

    Figure  3.  Stress-deformation curves of numerical simulation and tests

    图  4  模型网格

    Figure  4.  Meshes of model

    图  5  三种荷载作用情况

    Figure  5.  Three loading situations

    图  6  荷载作用位置

    Figure  6.  Loading locations

    图  7  传力杆周围的混凝土位置

    Figure  7.  Concrete location around dowel bar

    图  8  等效塑性拉应变

    Figure  8.  Equivalent plastic tensile strains

    图  9  等效塑性拉应变云图

    Figure  9.  Contours of equivalent plastic tensile strain

    图  10  受拉损伤因子

    Figure  10.  Tensile damaged factors

    图  11  受拉损伤因子云图

    Figure  11.  Contours of tensile damaged factors

    图  12  Mises等效应力

    Figure  12.  Mises equivalent stresses

    图  13  混凝土为弹性时传力杆周围混凝土的应力

    Figure  13.  Stresses of concrete around dowel bar as concrete is elastic

    表  1  混凝土基本力学性质参数

    Table  1.   Fundamental mechanical property parameters of concrete

    力学性质参数 计算公式 参数值
    弯拉强度fr/MPa 5.5
    立方体抗压强度fcu/MPa fcu=1.1(fr/0.438)3/2 48.947
    轴心抗拉强度ft/MPa ft=0.24fcu2/3 3.211
    峰值拉应变εtr/10-3 εtr=6.7×10-5ft1/2 0.120
    轴心抗压强度fc/MPa fc=0.4fcu7/6 37.446
    峰值压应变εcr/10-3 εcr=5.2×10-4fc1/3 1.738
    初始弹性模量E0/MPa E0=ft/εtr 26 700
    下载: 导出CSV

    表  2  混凝土单轴拉伸损伤塑性参数

    Table  2.   Damaged plastic parameters of concrete under uniaxial tension

    σt εt/10-3 εti/10-3 dt
    3.211 0.120 0.000 0.000
    2.923 0.144 0.035 0.038
    2.519 0.168 0.074 0.120
    2.171 0.192 0.111 0.213
    1.895 0.216 0.145 0.300
    1.678 0.240 0.177 0.377
    1.506 0.264 0.208 0.445
    1.367 0.288 0.237 0.502
    1.158 0.336 0.293 0.594
    0.950 0.408 0.373 0.691
    0.743 0.528 0.500 0.789
    0.564 0.720 0.699 0.869
    0.495 0.840 0.822 0.897
    0.371 1.200 1.186 0.941
    0.303 1.560 1.548 0.962
    0.259 1.919 1.910 0.973
    0.228 2.279 2.270 0.979
    0.205 2.638 2.630 0.984
    0.187 2.997 2.990 0.987
    下载: 导出CSV

    表  3  混凝土单轴压缩损伤塑性参数

    Table  3.   Damaged plastic parameters of concrete under uniaxial compression

    σc εc/10-3 εci/10-3 dc
    33.265 1.241 0.000 0.000
    35.330 1.391 0.070 0.005
    36.930 1.564 0.184 0.022
    37.446 1.738 0.336 0.047
    34.184 2.085 0.807 0.122
    28.117 2.433 1.381 0.218
    22.626 2.780 1.934 0.316
    18.392 3.127 2.439 0.406
    15.239 3.473 2.904 0.483
    12.878 3.820 3.339 0.548
    9.678 4.513 4.151 0.648
    6.929 5.552 5.293 0.747
    4.964 6.935 6.749 0.825
    3.638 8.661 8.525 0.881
    2.863 10.384 10.277 0.914
    2.358 12.104 12.016 0.934
    下载: 导出CSV

    表  4  试件力学性质参数

    Table  4.   Mechanical property parameters of specimens

    力学性质参数 参数值
    轴心抗拉强度ft/MPa 3.2
    峰值拉应变εtr/10-3 0.107
    轴心抗压强度fc/MPa 46.5
    峰值压应变εcr/10-3 1.830
    初始弹性模量E0/MPa 30 000
    下载: 导出CSV

    表  5  路面结构尺寸和材料参数

    Table  5.   Structural dimensions and material parameters of pavement

    结构 长(m)×宽(m)×厚(m) 模量/MPa 泊松比
    面层 4.0×3.6×0.26 26 700 0.20
    基层 9.0×4.6×0.2 2 500 0.20
    底基层 9.0×4.6×0.2 250 0.25
    路基 9.0×4.6×6.0 80 0.35
    下载: 导出CSV

    表  6  荷载参数

    Table  6.   Loading parameters

    轴载/kN 接地压强/MPa 轮印宽/cm 轮印长/cm
    50 0.44 22 12.91
    100 0.57 22 19.94
    150 0.71 24 22.01
    200 0.85 24 24.51
    250 0.97 24 26.85
    下载: 导出CSV
  • [1] 谭忆秋, 李洛克, 曹鹏, 等. 水泥混凝土路面传力杆系统极限承载力的扩展有限元分析[J]. 农业工程学报, 2012, 28(24): 62-69, 360. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201224013.htm

    TAN Yi-qiu, LI Luo-ke, CAO Peng, et al. Extended finite element analysis of ultimate load-bearing capacity for dowel bar system in cement concrete pavement[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(24): 62-69, 360. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201224013.htm
    [2] SEO Y, KIM S M. Longitudinal cracking at transverse joints caused by dowel bars in jointed concrete pavements[J]. KSCE Journal of Civil Engineering, 2013, 17(2): 395-402. doi: 10.1007/s12205-013-2047-5
    [3] HU Ming-wu, LI Luo-ke, WANG Yi-na, et al. The application of numerical simulation technology in road engineering[J]. Applied Mechanics and Materials, 2013, 336-338: 690-694. doi: 10.4028/www.scientific.net/AMM.336-338.690
    [4] 蒋应军, 戴经梁. 传力杆与混凝土界面的接触应力[J]. 中国公路学报, 2007, 20(2): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200702005.htm

    JIANG Ying-jun, DAI Jing-liang. Contact stresses at interfaces between dowels and surrounding concrete[J]. China Journal of Highway and Transport, 2007, 20(2): 29-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200702005.htm
    [5] RIAD M Y. Stress concentration around dowel bars in jointed rigid concrete pavements[D]. Morgartown: West Virginia University, 2001.
    [6] RIAD M Y, SHOUKRY S N, WILLIAM G W, et al. Effect of skewed joints on the performance of jointed concrete pavement through 3D dynamic finite element analysis[J]. International Journal of Pavement Engineering, 2009, 10(4): 251-263. doi: 10.1080/10298430701771783
    [7] LI Luo-ke, TAN Yi-qiu, GONG Xiang-bing, et al. Characterization of contact stresses between dowels and surrounding concrete in jointed concrete pavement[J]. International Journal of Civil and Environmental Engineering, 2012, 12(5): 23-27.
    [8] 李洛克. 水泥混凝土路面传力杆的传荷失效机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    LI Luo-ke. Research on the load transfer failure mechanism for dowel bar in concrete pavement[D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese)
    [9] AL-HUMEIDAWI B H, MANDAL P. Evaluation of performance and design of GFRP dowels in jointed plain concrete pavement—Part 2: numerical simulation and design considerations[J]. International Journal of Pavement Engineering, 2014, 15(8): 752-765. doi: 10.1080/10298436.2014.893314
    [10] MACKIEWICZ P. Thermal stress analysis of jointed plane in concrete pavements[J]. Applied Thermal Engineering, 2014, 73(1): 1169-1176. doi: 10.1016/j.applthermaleng.2014.09.006
    [11] MACKIEWICZ P. Finite-element analysis of stress concentration around dowel bars in jointed plain concrete pavement[J]. Journal of Transportation Engineering, 2015, 141(6): 06015001. doi: 10.1061/(ASCE)TE.1943-5436.0000768
    [12] MACKIEWICZ P, SZYDŁO A. The analysis of stress concentration around dowel bars in concrete pavement[J]. Magazine of Concrete Research, 2020, 72(2): 97-107. doi: 10.1680/jmacr.18.00057
    [13] ZUZULOVA A, GROSEK J, JANKU M. Experimental laboratory testing on behavior of dowels in concrete pavements[J]. Materials, 2020, 13(10): 2343. doi: 10.3390/ma13102343
    [14] LUBLINER J, OLIVER J, OLLER S, et al. A plastic- damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3): 299-326. doi: 10.1016/0020-7683(89)90050-4
    [15] LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900. doi: 10.1061/(ASCE)0733-9399(1998)124:8(892)
    [16] MAHMUD G H, YANG Zhen-jun, HASSAN A M. Experimental and numerical studies of size effects of ultra high performance steel fibre reinforced concrete (UHPFRC) beams[J]. Construction and Building Materials, 2013, 48: 1027-1034. doi: 10.1016/j.conbuildmat.2013.07.061
    [17] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4): 59-67, 82. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201304009.htm

    NIE Jian-guo, WANG Yu-hang. Comparison study of constitutive model of concrete in ABAUQS for static analysis of structures[J]. Engineering Mechanics, 2013, 30(4): 59-67, 82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201304009.htm
    [18] GEORGE J, KALYANA RAMA J S, SIVA KUMAR M V N, et al. Behavior of plain concrete beam subjected to three point bending using concrete damaged plasticity (CDP) model[J]. Materials Today: Proceedings, 2017, 4(9): 9742-9746. doi: 10.1016/j.matpr.2017.06.259
    [19] PRABHU M, BUCH N, VARMA A, et al. Experimental investigation of effects of dowel misalignment on joint opening behavior in rigid pavements[J]. Transportation Research Record, 2006, 1947(1), 15-27. doi: 10.1177/0361198106194700102
    [20] PRABHU M, VARMA A H, BUCH N. Experimental and analytical investigations of mechanistic effects of dowel misalignment in jointed concrete pavements[J]. Transportation Research Record, 2007, 2037(1): 12-29. doi: 10.3141/2037-02
    [21] PRABHU M, VARMA A, BUCH N. Analytical investigation of the effects of dowel misalignment on concrete pavement joint opening behaviour[J]. The International Journal of Pavement Engineering, 2009, 10(1): 49-62. doi: 10.1080/10298430802342708
    [22] 贾少文. 基于连续损伤力学的混凝土疲劳损伤模型[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    JIA Shao-wen. Continuum damage mechanics-based fatigue damage model for concrete[D]. Harbin: Harbin Institute of Technology, 2009. (in Chinese)
    [23] 王中强, 余志武. 基于能量损失的混凝土损伤模型[J]. 建筑材料学报, 2004, 7(4): 365-369. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200404001.htm

    WANG Zhong-qiang, YU Zhi-wu. Concrete damage model based on energy loss[J]. Journal of Building Materials, 2004, 7(4): 365-369. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200404001.htm
    [24] NAJAR J. Continuous damage of brittle solids[M]//KRAJCINOVIC D, LEMAITRE J. Continuum Damage Mechanics Theory and Application. New York: Springer, 1987: 233-294.
    [25] BIRTEL V, MARK P. Parameterized finite element modeling of RC beam shear failure[R]. Boston: ABAQUS Inc, 2006.
    [26] 丁发兴, 余志武. 混凝土受拉力学性能统一计算方法[J]. 华中科技大学学报(城市科学版), 2004, 21(3): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ200403008.htm

    DING Fa-xing, YU Zhi-wu. Unified calculation method of mechanical properties of concrete in tension[J]. Journal of Huazhong University of Science and Technology (Urban Science Edition), 2004, 21(3): 29-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ200403008.htm
    [27] 余志武, 丁发兴. 混凝土受压力学性能统一计算方法[J]. 建筑结构学报, 2003, 24(4): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200304005.htm

    YU Zhi-wu, DING Fa-xing. Unified calculation method of compressive mechanical properties of concrete[J]. Journal of Building Structures, 2003, 24(4): 41-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200304005.htm
    [28] 顾惠琳, 彭勃. 混凝土单轴直接拉伸应力-应变全曲线试验方法[J]. 建筑材料学报, 2003, 6(1): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200301013.htm

    GU Hui-lin, PENG Bo. Review on the test methods of stress-strain curves of concrete in direct tensile tests[J]. Journal of Building Materials, 2003, 6(1): 66-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200301013.htm
    [29] 吴博. 混凝土应力-应变曲线试验研究与随机损伤本构模型[D]. 西安: 西安建筑科技大学, 2015.

    WU bo. Experimental study on complete stress-strain curve of concrete under uniaxial loading and stochastic damage constitutive model[D]. Xi'an: Xi'an University of Architecture and Technology, 2015. (in Chinese)
    [30] 田波, 姚祖康, 赵队家, 等. 承受特重车辆作用的水泥混凝土路面应力分析[J]. 中国公路学报, 2000, 13(2): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200002004.htm

    TIAN Bo, YAO Zu-kang, ZHAO Dui-jia, et al. Stress analysis of cement concrete pavement with heavy loading[J]. China Journal of Highway and Transport, 2000, 13(2): 16-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200002004.htm
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  1608
  • HTML全文浏览量:  650
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-22
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回