留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桥梁缆索钢丝疲劳性能影响因素试验

王春生 吕兴豪 李熙 段兰 姚博

王春生, 吕兴豪, 李熙, 段兰, 姚博. 桥梁缆索钢丝疲劳性能影响因素试验[J]. 交通运输工程学报, 2023, 23(1): 70-79. doi: 10.19818/j.cnki.1671-1637.2023.01.005
引用本文: 王春生, 吕兴豪, 李熙, 段兰, 姚博. 桥梁缆索钢丝疲劳性能影响因素试验[J]. 交通运输工程学报, 2023, 23(1): 70-79. doi: 10.19818/j.cnki.1671-1637.2023.01.005
WANG Chun-sheng, LYU Xing-hao, LI Xi, DUAN Lan, YAO Bo. Experiments on factors affecting fatigue performance of bridge cable steel wires[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 70-79. doi: 10.19818/j.cnki.1671-1637.2023.01.005
Citation: WANG Chun-sheng, LYU Xing-hao, LI Xi, DUAN Lan, YAO Bo. Experiments on factors affecting fatigue performance of bridge cable steel wires[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 70-79. doi: 10.19818/j.cnki.1671-1637.2023.01.005

桥梁缆索钢丝疲劳性能影响因素试验

doi: 10.19818/j.cnki.1671-1637.2023.01.005
基金项目: 

国家重点研发计划 2015CB057703

陕西省创新能力支撑计划项目 2019TD-022

详细信息
    作者简介:

    王春生(1972-),男,黑龙江绥化人,长安大学教授,工学博士,从事钢桥与组合结构桥梁研究

  • 中图分类号: U441.4

Experiments on factors affecting fatigue performance of bridge cable steel wires

Funds: 

National Key Research and Development Program of China 2015CB057703

Innovation Capability Support Program of Shaanxi Province 2019TD-022

More Information
  • 摘要: 为研究桥梁缆索钢丝的疲劳与腐蚀疲劳性能,采用不同强度等级新钢丝、服役7年的斜拉桥拉索钢丝和人工加速腐蚀钢丝开展了缆索钢丝疲劳与腐蚀疲劳试验;根据典型疲劳断口宏观形貌特征,探究了缆索钢丝的疲劳断裂机制;采用威布尔分布函数拟合了缆索钢丝的应力-疲劳寿命曲线,对比了不同钢丝应力-疲劳寿命曲线的差异,揭示了强度等级、应力比、腐蚀损伤和腐蚀疲劳损伤4个关键因素对缆索钢丝抗疲劳性能的影响规律,并建议了相应的疲劳强度曲线。试验结果表明:钢丝未发生腐蚀时抗疲劳性能良好,随着强度等级的提高,缆索钢丝的疲劳强度显著增大,对应的疲劳极限也逐渐上升;缆索钢丝的疲劳强度随应力比的增大而显著减小;腐蚀和腐蚀疲劳损伤均会大幅降低缆索钢丝的疲劳强度,腐蚀疲劳损伤对缆索钢丝剩余疲劳寿命的影响大于单一腐蚀损伤;新钢丝的疲劳裂纹起源于表面划痕或材料不均匀处,对于带腐蚀和腐蚀疲劳损伤的钢丝,蚀坑处存在显著的应力集中,疲劳裂纹源形成于钢丝表面蚀坑处,多源裂纹萌生与裂纹不规则扩展的几率增大;桥梁缆索抗疲劳设计与安全评估时应综合考虑钢丝强度等级、应力比、腐蚀和腐蚀疲劳损伤的影响,试验采用国内桥梁缆索广泛使用的钢丝,得到的疲劳强度可供桥梁缆索抗疲劳设计与寿命预测时参考。

     

  • 图  1  疲劳试验钢丝和试验工装

    Figure  1.  Fatigue test steel wires and test tooling

    图  2  不同应力幅下典型断口宏观形貌

    Figure  2.  Macroscopic morphologies of typical fracture surfaces in different stress ranges

    图  3  多源断口宏观形貌

    Figure  3.  Macroscopic morphologies of multi-source fracture surfaces

    图  4  不同规范中缆索和钢丝S-N曲线

    Figure  4.  S-N curves of cables and cable steel wires in different specifications

    图  5  R=0.4时不同强度等级无损伤缆索钢丝的S-N曲线

    Figure  5.  S-N curves of none-damage steel wires with different strength grades when R=0.4

    图  6  B类钢丝在不同应力比下的S-N曲线

    Figure  6.  S-N Curves of class B steel wires under different stress ratios

    图  7  R=0.4时腐蚀钢丝的S-N曲线

    Figure  7.  S-N curves of corroded steel wires when R=0.4

    图  8  R=0.4时不同腐蚀疲劳损伤钢丝的S-N曲线

    Figure  8.  S-N curves of steel wires with different corrosion fatigue damage when R=0.4

    表  1  不同试验工况缆索钢丝的质量损失率和表面形貌

    Table  1.   Mass loss rates and surface morphologies of cable steel wires under different test conditions

    钢丝类别 A类 B类 C类
    C1 C2
    数量 60 34 20 17
    质量损失率% 均值 4.26 2.10 2.70
    标准差 0.77 0.55 0.75
    表面形貌
    下载: 导出CSV

    表  2  缆索钢丝疲劳试验结果

    Table  2.   Fatigue test results of cable steel wires

    钢丝类别 应力幅/MPa 应力比 数量 疲劳寿命/万次
    A类 1 670 MPa 800 0.4 5 3.4~4.7
    700 5 6.1~9.8
    600 5 10.1~18.6
    500 5 22.1~50.5
    1 770 MPa 800 0.4 5 4.1~6.1
    700 5 7.6~10.6
    600 5 20.2~33.9
    500 5 87.3~200.0*
    1 860 MPa 800 0.4 5 8.5~9.8
    700 5 22.9~42.3
    600 5 101.9~200.0*
    500 5 200.0*
    B类 1 770 MPa
    预腐蚀
    700 0.4 5 3.4~5.7
    600 5 5.4~9.5
    500 5 5.8~12.5
    400 4 12.2~29.2
    300 0.8 5 16.5~62.5
    275 5 34.5~82.9
    250 5 200.0*
    C类 C1 700 0.4 5 5.3~7.5
    600 5 11.6~25.8
    5 500 42.9~165.4
    400 5 200.0*
    C2 700 0.4 2 2.5~3.2
    600 5 2.5~6.0
    500 5 6.1~10.5
    400 5 14.4~18.0
    下载: 导出CSV
  • [1] ZHOU Yu-fen, CHEN Su-ren. Investigation of the live-load effects on long-span bridges under traffic flows[J]. Journal of Bridge Engineering, 2018, 23(5): 04018021. doi: 10.1061/(ASCE)BE.1943-5592.0001214
    [2] 毛伟琦, 胡雄伟. 中国大跨度桥梁最新进展与展望[J]. 桥梁建设, 2020, 50(1): 13-19. doi: 10.3969/j.issn.1003-4722.2020.01.003

    MAO Wei-qi, HU Xiong-wei. Latest developments and prospects for long-span bridges in China[J]. Bridge Construction, 2020, 50(1): 13-19. (in Chinese) doi: 10.3969/j.issn.1003-4722.2020.01.003
    [3] WATSON S C, STAFFORD D G. Cables in trouble[J]. Civil Engineering, 1988, 58 (4): 38-41.
    [4] 宋神友, 薛花娟, 陈焕勇, 等. 伶仃洋大桥锌-铝-稀土合金镀层钢丝腐蚀-疲劳耦合试验研究[J]. 桥梁建设, 2022, 52(2): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202202004.htm

    SONG Shen-you, XUE Hua-juan, CHEN Huan-yong, et al. Experimental research on corrosion-fatigue coupling of Zn-Al-rare earth alloy coated steel wires of Lingdingyang Bridge[J]. Bridge Construction, 2022, 52(2): 24-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202202004.htm
    [5] HAMILTON Ⅲ H R, BREEN J E, FRANK K H. Investigation of corrosion protection systems for bridge stay cables[D]. Austin: University of Texas, 1995.
    [6] 王力力, 易伟建. 斜拉索的腐蚀案例与分析[J]. 中南公路工程, 2007(1): 93-98. doi: 10.3969/j.issn.1674-0610.2007.01.023

    WANG Li-li, YI Wei-jian. Cases analysis on cable corrosion of cable-stayed bridges[J]. Central South Highway Engineering, 2007(1): 93-98. (in Chinese) doi: 10.3969/j.issn.1674-0610.2007.01.023
    [7] MORGADO T L M, SOUSA E BRITO A. A failure analysis study of a prestressed steel cable of a suspension bridge[J]. Case Studies in Construction Materials, 2015, 3: 40-47. doi: 10.1016/j.cscm.2015.04.001
    [8] NAKAMURA S, SUZUMURA K. Experimental study on fatigue strength of corroded bridge wires[J]. Journal of Bridge Engineering, 2013, 18(3): 200-209. doi: 10.1061/(ASCE)BE.1943-5592.0000366
    [9] JIANG J H, MA A B, WENG W F, et al. Corrosion fatigue performance of pre-split steel wires for high strength bridge cables[J]. Fatigue and Fracture of Engineering Materials and Structures, 2009, 32(9): 769-779. doi: 10.1111/j.1460-2695.2009.01384.x
    [10] TARUI T, MARUYAMA N, EGUCHI T, et al. High strength galvanized steel wire for bridge cables[J]. Structural Engineering International, 2002, 12(3): 209-213. doi: 10.2749/101686602777965342
    [11] TAKENA K, MIKI C, SHIMOKAWA H, et al. Fatigue resistance of large-diameter cable for cable-stayed bridges[J]. Journal of Structural Engineering, 1992, 118(3): 701-715. doi: 10.1061/(ASCE)0733-9445(1992)118:3(701)
    [12] 程育仁, 王家石, 李鸿发, 等. Φ5 mm碳素钢丝的疲劳性能[J]. 铁道学报, 1989, 11(1): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB198901008.htm

    CHENG Yu-ren, WANG Jia-shi, LI Hong-fa, et al. Fatigue behavior of Φ5 mm carbon steel wire[J]. Journal of the China Railway Society, 1989, 11(1): 74-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB198901008.htm
    [13] 李先立, 宋显辉, 刘禹钦. 高强镀锌钢丝疲劳可靠性研究[J]. 土木工程学报, 1995, 28(2): 36-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199502004.htm

    LI Xian-li, SONG Xian-hui, LIU Yu-qin. Investigation on fatigue reliability of high strength galvanized steel wires[J]. China Civil Engineering Journal, 1995, 28(2): 36-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199502004.htm
    [14] 徐俊. 拉索损伤演化机理与剩余使用寿命评估[D]. 上海: 同济大学, 2006.

    XU Jun. Damage evolution mechanism and remained service lives evaluation of stayed cables[D]. Shanghai: Tongji University, 2006. (in Chinese)
    [15] 兰成明. 平行钢丝斜拉索全寿命安全评定方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    LAN Cheng-ming. Study on life-cycle safety assessment methods for parallel wire stay cable[D]. Harbin: Harbin Institute of Technology, 2009. (in Chinese)
    [16] 吴冲, 蒋超, 姜旭. 预腐蚀桥梁缆索高强钢丝疲劳试验[J]. 同济大学学报(自然科学版), 2018, 46(12): 1622-1627. doi: 10.11908/j.issn.0253-374x.2018.12.002

    WU Chong, JIANG Chao, JIANG Xu. Experiment research on fatigue performance of pre-corroded high-strength bridge wires[J]. Journal of Tongji University (Natural Science), 2018, 46(12): 1622-1627. (in Chinese) doi: 10.11908/j.issn.0253-374x.2018.12.002
    [17] 张家男. 桥梁拉吊索用高强镀锌钢丝锈蚀与疲劳性能研究[D]. 大连: 大连理工大学, 2016.

    ZHANG Jia-nan. Study on corrosion and fatigue properties of high-strength galvanized steel wire used for cable of bridge[D]. Dalian: Dalian University of Technology, 2016. (in Chinese)
    [18] 李晓章, 谢旭, 潘骁宇, 等. 拱桥吊杆锈蚀高强钢丝疲劳性能试验研究[J]. 土木工程学报, 2015, 48(11): 68-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201511010.htm

    LI Xiao-zhang, XIE Xu, PAN Xiao-yu, et al. Experimental study on fatigue performance of corroded high tensile steel wires of arch bridge hangers[J]. China Civil Engineering Journal, 2015, 48 (11): 68-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201511010.htm
    [19] MIAO Chang-qing, LI Rou, YU Jie. Effects of characteristic parameters of corrosion pits on the fatigue life of the steel wires[J]. Journal of Constructional Steel Research, 2020, 168: 105879. doi: 10.1016/j.jcsr.2019.105879
    [20] MA Ya-fei, WANG Guo-dong, GUO Zhong-zhao, et al. Critical region method-based fatigue life prediction of notched steel wires of long-span bridges[J]. Construction and Building Materials, 2019, 225: 601-610. doi: 10.1016/j.conbuildmat.2019.07.157
    [21] 郑祥隆, 谢旭, 李晓章, 等. 锈蚀钢丝疲劳断口分析与寿命预测[J]. 中国公路学报, 2017, 30(4): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201704010.htm

    ZHENG Xiang-long, XIE Xu, LI Xiao-zhang, et al. Fatigue fracture surface analysis and fatigue life estimation of corroded steel wires[J]. China Journal of Highway and Transport, 2017, 30(4): 79-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201704010.htm
    [22] CHEN Chao, JIE Zhi-yu, WANG Kai-nan. Fatigue life evaluation of high-strength steel wires with multiple corrosion pits based on the TCD[J]. Journal of Constructional Steel Research, 2021, 186: 106913.
    [23] JIE Z, SUSMEL L. High-strength steel wires containing corrosion pits: stress analysis and critical distance based fatigue life estimation[J]. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43(8): 1611-1629.
    [24] JUNGWIRTH D, BALÁZS G L, BOITEL P. Acceptance of stay cable systems using prestressing steels[R]. Lausanne: Fédération Internationale du Béton, 2005.
    [25] 李鸥, 侍刚, 王波, 等. 运营期桥梁斜拉索的技术状况检测[J]. 世界桥梁, 2017, 45(4): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201704016.htm

    LI Ou, SHI Gang, WANG Bo, et al. Inspection of technical condition of bridge stay cables in operation period[J]. World Bridges, 2017, 45(4): 79-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201704016.htm
    [26] 李晓章. 拱桥服役吊杆的力学性能退化及其索力识别研究[D]. 杭州: 浙江大学, 2015.

    LI Xiao-zhang. Research on mechanical performance degradation and tension force identification of arch bridge hander[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
    [27] 刘明虎, 薛花娟. 港珠澳大桥超高强度平行钢丝斜拉索设计与技术研究[J]. 桥梁建设, 2014, 44(5): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201405018.htm

    LIU Ming-hu, XUE Hua-juan. Design and technological study of super high strength parallel steel wire stay cables for Hong Kong-Zhuhai-Macao Bridge[J]. Bridge Construction, 2014, 44(5): 88-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201405018.htm
    [28] 闫志刚, 薛花娟. 沪通长江大桥直径7 mm 2 000 MPa级钢丝试验研究[J]. 铁道学报, 2018, 4(7): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201807019.htm

    YAN Zhi-gang, XUE Hua-juan. Test research on 2 000 MPa 7 mm diameter steel wire for Hutong Changjiang River Bridge[J]. Journal of the China Railway Society, 2018, 4(7): 115-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201807019.htm
    [29] 钟群鹏, 赵子华, 张峥. 断口学的发展及微观断裂机理研究[J]. 机械强度, 2005, 27(3): 358-370. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD200503017.htm

    ZHONG Qun-peng, ZHAO Zi-hua, ZHANG Zheng. Development of fractography and research of fracture micromechanism[J]. Journal of Mechanical Strength, 2005, 27(3): 358-370. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD200503017.htm
    [30] 兰成明, 徐阳, 任登路, 等. 平行钢丝斜拉索疲劳性能评定Ⅰ: 钢丝疲劳寿命模型[J]. 土木工程学报, 2017, 50(6): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201707008.htm

    LAN Cheng-ming, XU Yang, REN Deng-lu, et al. Fatigue property assessment of parallel wire stay cable Ⅰ: fatigue life model for wire[J]. China Civil Engineering Journal, 2017, 50(6): 62-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201707008.htm
    [31] 傅惠民, 高镇同. 确定威布尔分布三参数的相关系数优化法[J]. 航空学报, 1990, 11(7): 323-327. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB199007002.htm

    FU Hui-min, GAO Zhen-tong. An optimization method of correlation coefficient for determining a three-parameter Weibull distribution[J]. Acta Aeronautica et Astronautica Sinica, 1990, 11(7): 323-327. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB199007002.htm
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  503
  • HTML全文浏览量:  156
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-13
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回