留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用实测数据实时修正的机场跑道水膜厚度面域分布预估方法

蔡爵威 赵鸿铎 钱鑫 吴鸣涛 钱劲松

蔡爵威, 赵鸿铎, 钱鑫, 吴鸣涛, 钱劲松. 采用实测数据实时修正的机场跑道水膜厚度面域分布预估方法[J]. 交通运输工程学报, 2023, 23(1): 105-114. doi: 10.19818/j.cnki.1671-1637.2023.01.008
引用本文: 蔡爵威, 赵鸿铎, 钱鑫, 吴鸣涛, 钱劲松. 采用实测数据实时修正的机场跑道水膜厚度面域分布预估方法[J]. 交通运输工程学报, 2023, 23(1): 105-114. doi: 10.19818/j.cnki.1671-1637.2023.01.008
CAI Jue-wei, ZHAO Hong-duo, QIAN Xin, WU Ming-tao, QIAN Jin-song. Estimation method for area distribution of water film thickness on airport runway modified by measured data in real time[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 105-114. doi: 10.19818/j.cnki.1671-1637.2023.01.008
Citation: CAI Jue-wei, ZHAO Hong-duo, QIAN Xin, WU Ming-tao, QIAN Jin-song. Estimation method for area distribution of water film thickness on airport runway modified by measured data in real time[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 105-114. doi: 10.19818/j.cnki.1671-1637.2023.01.008

采用实测数据实时修正的机场跑道水膜厚度面域分布预估方法

doi: 10.19818/j.cnki.1671-1637.2023.01.008
基金项目: 

国家自然科学基金项目 51978520

国家重点研发计划 2018YFB1600201

详细信息
    作者简介:

    蔡爵威(1995-),男,江西九江人,同济大学工程博士研究生,从事铺面湿滑状态智能感知研究

    赵鸿铎(1976-),男,浙江宁海人,同济大学教授,工学博士。

    通讯作者:

    钱鑫(1989-),男,安徽铜陵人,同济大学研究员,工学博士

  • 中图分类号: V351.11

Estimation method for area distribution of water film thickness on airport runway modified by measured data in real time

Funds: 

National Natural Science Foundation of China 51978520

National Key Research and Development Program of China 2018YFB1600201

More Information
  • 摘要: 为精准预估不同跑道状况与降雨条件下跑道水膜厚度的面域分布,基于二维浅水方程建立了水膜厚度面域分布数值模型,开发了基于格心型有限体积法和HLL(Harten, Lax and van Leer)格式近似Riemann解的数值求解算法;在此基础上,引入水膜厚度的实测数据,通过构造伴随方程,采用梯度下降法获取了实际降雨条件下的最优曼宁系数,从而动态修正了二维浅水方程的计算结果,精准预估了跑道水膜厚度面域分布;采用北京首都国际机场安全预警平台的水膜厚度实测数据和车载式LiDAR系统获取的路面高程数据,计算分析了曼宁系数更新间隔和高程空间采样间隔对模型求解效率和精度的影响,并采用实测数据验证了算法的准确性。研究结果表明:为满足水膜厚度实时监测需求,在综合考虑计算耗时与求解精度的条件下,曼宁系数的最优更新间隔为30~300 s,对于表面平整的道面,高程的最优空间采样间隔为0.1~0.5 m,对于存在车辙等病害的道面,高程的最优空间采样间隔为0.10~0.25 m;在真实降雨条件下,水膜厚度计算值与实测值的平均误差为0.13 mm,最大误差为0.76 mm,满足机场对水膜厚度的监测需求。由此可见,建立的跑道水膜厚度面域分布预估方法能够准确计算出给定高程道面的水膜厚度分布及其时间演化,可为湿滑跑道的抗滑性能评价与风险预警提供可靠的数据支撑。

     

  • 图  1  传感器布设

    Figure  1.  Layout of sensors

    图  2  不同更新间隔下水膜厚度的计算值与实测值对比

    Figure  2.  Comparison of water film thicknesses between calculated and measured values under different update intervals

    图  3  不同更新间隔下的时间占用率与误差

    Figure  3.  Time occupancies and calculation errors under different update intervals

    图  4  不同高程空间采样间隔下正常路面的水膜厚度分布

    Figure  4.  Water film thickness distributions of normal pavement under different elevation spatial sample intervals

    图  5  不同高程空间采样间隔下车辙路面的水膜厚度分布

    Figure  5.  Water film thickness distributions of rutting pavement under different elevation spatial sample intervals

    图  6  不同空间采样间隔下纵断面x=5 m处水膜厚度对比

    Figure  6.  Comparison of water film thicknesses at vertical section of x=5 m under different spatial sample intervals

    图  7  模型计算值与实测值对比

    Figure  7.  Comparison between calculated values of model and measured values

  • [1] DO M T, CEREZO V, BEAUTRU Y, et al. Influence of thin water film on skid resistance[J]. Journal of Traffic and Transportation Engineering (English Edition), 2014, 2(1): 36-44.
    [2] CHU Long-jia, FWA T F. Incorporating pavement skid resistance and hydroplaning risk considerations in asphalt mix design[J]. Journal of Transportation Engineering, 2016, 142(10): 04016039. doi: 10.1061/(ASCE)TE.1943-5436.0000872
    [3] FWA T F, ONG G P. Wet-pavement hydroplaning risk and skid resistance: analysis[J]. Journal of Transportation Engineering, 2008, 134(5): 182-190. doi: 10.1061/(ASCE)0733-947X(2008)134:5(182)
    [4] 中国民用航空局. 民用机场飞行区场地维护技术指南[R]. 北京: 中国民用航空局, 2010.

    Civil Aviation Administration of China. Technical guide for maintenance of civil airport airfield[R]. Beijing: Civil Aviation Administration of China, 2010. (in Chinese)
    [5] 孙林. IRS21智能路面路况传感器研究[D]. 南京: 东南大学, 2009.

    SUN Lin. Research on intelligent road surface sensor IRS21[D]. Nanjing: Southeast University, 2009. (in Chinese)
    [6] 丁卯. 用于道路表面的冰雪检测技术的研究[D]. 南京: 东南大学, 2012.

    DING Mao. Research on ice and snow detection technology for pavement surface[D]. Nanjing: Southeast University, 2012. (in Chinese)
    [7] EWAN L, AL-KAISY A, VENEZIANO D. Remote sensing of weather and road surface conditions: is technology mature for reliable intelligent transportation systems applications?[J]. Transportation Research Record, 2013, 2329(1): 8-16. doi: 10.3141/2329-02
    [8] 赵鸿铎, 伍梦竹, 吴世涛. 沥青道面摩擦系数随水膜厚度的变化规律[J]. 中国民航大学学报, 2015, 33(2): 47-52. doi: 10.3969/j.issn.1674-5590.2015.02.011

    ZHAO Hong-duo, WU Meng-zhu, WU Shi-tao. Variation of asphalt pavement friction coefficient with change of water film thickness[J]. Journal of Civil Aviation University of China, 2015, 33(2): 47-52. (in Chinese) doi: 10.3969/j.issn.1674-5590.2015.02.011
    [9] BI Yan-qiu, PEI Jian-zhong, GUO Fu-cheng, et al. Implementation of polymer optical fibre sensor system for monitoring water membrane thickness on pavement surface[J]. International Journal of Pavement Engineering, 2021, 22(7): 872-881. doi: 10.1080/10298436.2019.1652298
    [10] CAI Jue-wei, ZHAO Hong-duo, ZHU Xing-yi, et al. Wide-area dynamic sensing method of water film thickness on asphalt runway[J]. Journal of Testing and Evaluation, 2020, 48(3): 20190172. doi: 10.1520/JTE20190172
    [11] HORNE W B, DREHER R C. Phenomena of pneumatic tire hydroplaning[R]. Washington DC: National Aeronautics and Space Administration, 1963.
    [12] LUO Jing, LIU Jian-bei, GUO Teng-feng, et al. Validation study of road surface water film depth prediction model[J]. Advanced Materials Research, 2014, 1079/1080: 379-385. doi: 10.4028/www.scientific.net/AMR.1079-1080.379
    [13] GALLAWAY B M, ROSE J G, SCHILLER J R E. The relative effects of several factors affecting rainwater depths on pavement surfaces[J]. Highway Research Record, 1972, 396: 59-71.
    [14] ANDERSON J. Depth of rain water on road surface[J]. Highways and Transportation, 1995, 42(5): 45-49.
    [15] 季天剑, 黄晓明, 刘清泉, 等. 沥青路面表面水膜厚度试验[J]. 公路交通科技, 2004, 21(12): 14-17. doi: 10.3969/j.issn.1002-0268.2004.12.004

    JI Tian-jian, HUANG Xiao-ming, LIU Qing-quan, et al. Test depth of water film on asphalt pavement surface[J]. Journal of Highway and Transportation Research and Development, 2004, 21(12): 14-17. (in Chinese) doi: 10.3969/j.issn.1002-0268.2004.12.004
    [16] 罗京, 刘建蓓, 王元庆. 路面水膜深度预测模型验证试验[J]. 中国公路学报, 2015, 28(12): 57-63. doi: 10.3969/j.issn.1001-7372.2015.12.008

    LUO Jing, LIU Jian-bei, WANG Yuan-qing. Validation test on pavement water film depth prediction model[J]. China Journal of Highway and Transport, 2015, 28(12): 57-63. (in Chinese) doi: 10.3969/j.issn.1001-7372.2015.12.008
    [17] HUEBNER R S, ANDERSON D A, WARNER J C. Proposed design guidelines for reducing hydroplaning on new and rehabilitated pavements[R]. Washington DC: National Cooperative Highway Research Program Research Results Digest, 1999.
    [18] 张理, 张卓. 路面坡度对水膜厚度的影响分析[J]. 重庆交通大学学报(自然科学版), 2013, 32(3): 404-406, 423. doi: 10.3969/j.issn.1674-0696.2013.03.08

    ZHANG Li, ZHANG Zhuo. Impact of road slope on water film thickness[J]. Journal of Chongqing Jiaotong University(Natural Science), 2013, 32(3): 404-406, 423. (in Chinese) doi: 10.3969/j.issn.1674-0696.2013.03.08
    [19] 耿艳芬, 陈先华, 陈悦, 等. 基于二维浅水方程的直线段沥青路面径流特性[J]. 交通运输工程学报, 2019, 19(1): 9-16. doi: 10.3969/j.issn.1671-1637.2019.01.002

    GENG Yan-fen, CHEN Xian-hua, CHEN Yue, et al. Runoff characteristics for straightline segment asphalt pavement based on two-dimensional shallow water equations[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 9-16. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.01.002
    [20] RESSEL W, WOLFF A, ALBER S, et al. Modelling and simulation of pavement drainage[J]. International Journal of Pavement Engineering, 2019, 20(7): 801-810. doi: 10.1080/10298436.2017.1347437
    [21] AZAMATHULLA H M, JARRETT R D. Use of gene-expression programming to estimate Manning's roughness coefficient for high gradient streams[J]. Water Resources Management, 2013, 27(3): 715-729. doi: 10.1007/s11269-012-0211-1
    [22] 季天剑. 降雨对轮胎与路面附着系数的影响[D]. 南京: 东南大学, 2004.

    JI Tian-jian. Effect of rainfall on friction coefficient between tire and pavement[D]. Nanjing: Southeast University, 2004. (in Chinese)
    [23] YU Chun-shui, DUAN J. Two-dimensional hydrodynamic model for surface-flow routing[J]. Journal of Hydraulic Engineering, 2014, 140(9): 04014045. doi: 10.1061/(ASCE)HY.1943-7900.0000913
    [24] HARTEN A. On a class of high-resolution total-variation-stable finite-difference schemes[J]. SIAM Journal on Numerical Analysis, 1984, 21(1): 1-23. doi: 10.1137/0721001
    [25] LUO Chen, XU Ke, ZHAO Yun-sheng. A TVD discretization method for shallow water equations: numerical simulations of tailing dam break[J]. International Journal of Modeling, Simulation, and Scientific Computing, 2017, 8(3): 1850001. doi: 10.1142/S1793962318500010
    [26] CEA L, FRENCH J R, VÁZQUEZ-CENDÓN M E. Numerical modelling of tidal flows in complex estuaries including turbulence: an unstructured finite volume solver and experimental validation[J]. International Journal for Numerical Methods in Engineering, 2006, 67(13): 1909-1932. doi: 10.1002/nme.1702
    [27] PAPPENBERGER F, BEVEN K, HORRITT M, et al. Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations[J]. Journal of Hydrology, 2005, 302(1/2/3/4): 46-69.
    [28] 柏禄海. 浅水方程高分辨率算法的研究[D]. 大连: 大连理工大学, 2013.

    BAI Lu-hai. Study on the shallow water equations of high-resolution algorithm[D]. Dalian: Dalian University of Technology, 2013. (in Chinese)
    [29] 中国民用航空局. 运输机场跑道表面状况评估和报告规则[R]. 北京: 中国民用航空局, 2020.

    Civil Aviation Administration of China. Reporting format using standard runway condition report[R]. Beijing: Civil Aviation Administration of China, 2020. (in Chinese)
    [30] YANG Wen-chen, TIAN Bi-jiang, FANG Yu-wei, et al. Evaluation of highway hydroplaning risk based on 3D laser scanning and water-film thickness estimation[J]. International Journal of Environmental Research and Public Health, 2022, 19(13): 7699. doi: 10.3390/ijerph19137699
  • 加载中
图(7)
计量
  • 文章访问数:  528
  • HTML全文浏览量:  178
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-08
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回