WANG Yan, LIU Jian-xin. Vibration properties of locomotive traction gear excited by load fluctuation[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 45-50. doi: 10.19818/j.cnki.1671-1637.2015.06.006
Citation: WANG Yan, LIU Jian-xin. Vibration properties of locomotive traction gear excited by load fluctuation[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 45-50. doi: 10.19818/j.cnki.1671-1637.2015.06.006

Vibration properties of locomotive traction gear excited by load fluctuation

doi: 10.19818/j.cnki.1671-1637.2015.06.006
More Information
  • Author Bio:

    WANG Yan(1989-), female, doctoral student, +86-28-87634783, yanw0115@126.com

    LIU Jian-xin(1965-), male, professor, PhD, +86-28-87634783, jxliu@home.swjtu.edu.cn

  • Received Date: 2015-07-20
  • Publish Date: 2015-12-25
  • Aiming at the problem of locomotive traction gear vibration excited by load fluctuation, the dynamics equations of locomotive traction gear were built.The vibrational frequency and amplitude of gear were got by using averaging method.The variation tendency of amplitude and the influences of parameter variations on the amplitude after gear vibrating stably were analyzed, and the simulation test of vibration was carried out.Analysis result shows that load torque is a function of vibrational speed.The vibrational frequency is a constant.When creep speeds are0.8, 0.2m·s-1 respectively, the vibrational frequencies of gear are 335.0 Hz, which is very close to the theoretical value 334.8 Hz.The amplitude decreases to 0 or gradually increase to a stable value according to different situations.When creep speed is 0.8 m·s-1, the amplitude after gear vibrating stably decreases with the increases of gear meshing stiffness and meshing damping, and increases with the increases of equivalent moment of inertia for small gear and locomotive axle load.Therefore, increasing gear meshing stiffness and meshing damping and decreasing equivalent moment of inertia for small gear and locomotive axle load help to decrease amplitude of gear.

     

  • loading
  • [1]
    LI Yi-nong, ZHANG Feng, DING Qing-zhong, et al. Method and experiment study for active vibration control of gear meshing[J]. Journal of Vibration Engineering, 2014, 27(2): 215-221. (in Chinese). doi: 10.3969/j.issn.1004-4523.2014.02.009
    [2]
    ZHANG Lin-lin, ZHU Ru-peng, JIN Guang-hu, et al. Vibration and noise analysis of internal excitations of single pair of gears[J]. Journal of Vibration Engineering, 2014, 27(6): 915-919. (in Chinese). doi: 10.3969/j.issn.1004-4523.2014.06.016
    [3]
    KAHRAMAN A, SINGH R. Interactions between timevarying mesh stiffness and clearance non-linearities in a geared system[J]. Journal of Sound and Vibration, 1991, 146(1): 135-156. doi: 10.1016/0022-460X(91)90527-Q
    [4]
    FARSHIDIANFAR A, SAGHAFI A. Bifurcation and chaos prediction in nonlinear gear systems[J]. Shock and Vibration, 2014, 2104: 1-8.
    [5]
    HE S, GUNDA R, SINGH R. Inclusion of sliding friction in contact dynamics model for helical gears[J]. Journal of Mechanical Design, 2007, 129(1): 48-57. doi: 10.1115/1.2359474
    [6]
    HE S, CHO S, SINGH R. Prediction of dynamic friction forces in spur gears using alternate sliding friction formulations[J]. Journal of Sound and Vibration, 2008, 309(3-5): 843-851. doi: 10.1016/j.jsv.2007.06.077
    [7]
    KAHRAMAN A, BLANKENSHIP G W. Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters[J]. Journal of Applied Mechanics, 1997, 64(1): 217-226. doi: 10.1115/1.2787276
    [8]
    AL-SHYYAB A, KAHRAMAN A. Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method: sub-harmonic motions[J]. Journal of Sound and Vibration, 2005, 279(1): 417-451.
    [9]
    HUANG Guan-hua, ZHANG Wei-hua, SONG Shu-qi, et al. Harmonic resonance analysis of gear transmission system for high speed train[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 51-58. (in Chinese). doi: 10.3969/j.issn.1671-1637.2014.06.007
    [10]
    PADMANABHAN C, SINGH R. Analysis of periodically forced nonlinear Hill's oscillator with application to a geared system[J]. The Journal of the Acoustical Society of America, 1996, 99(1): 324-334. doi: 10.1121/1.414544
    [11]
    THEODOSSIADES S, NATSIAVAS S. Non-linear dynamics of gear-pair systems with periodic stiffness and backlash[J]. Journal of Sound and Vibration, 2000, 229(2): 287-310. doi: 10.1006/jsvi.1999.2490
    [12]
    WANG Jian-ping, WANG Yu-xin. Harmonic resonance frequency factor of a spur geared system and primary resonance research[J]. Journal of Xi'an University of Technology, 2005, 21(2): 134-138. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XALD200502005.htm
    [13]
    WANG Jian-ping, WANG Yu-xin. Resonance analysis of gear system with the consideration of dynamic rigidity, transmission error and tooth backlash[J]. Journal of Machine Design, 2005, 22(9): 26-28, 32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ200509009.htm
    [14]
    LIU Wen, LIN Teng-jiao, LI Run-fang, et al. Dynamics performance analysis on gear system under shock spectrum[J]. Journal of Chongqing University, 2010, 33(1): 7-11. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201001003.htm
    [15]
    WEI Jing, SUN Wei, CHU Yan-shun, et al. Bifurcation and chaotic characteristics of helical gear system and parameter influences[J]. Journal of Harbin Engineering University, 2013, 34(10): 1301-1309. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201310016.htm
    [16]
    HIROTSU T, KASAI S, TAKAI H. Self-excited vibration during slippage of parallel Cardan drives for electric railcars[J]. JSME International Journal, 1987, 30: 1304-1310. doi: 10.1299/jsme1987.30.1304
    [17]
    CHEN Zhe-ming, ZENG Jing, LUO Ren, et al. Effect of wheelset longitudinal slip on transmission vibration of motor car[J]. Computer Engineering and Applications, 2011, 47(14): 214-216. (in Chinese). doi: 10.3778/j.issn.1002-8331.2011.14.062
    [18]
    ISHIKAWA Y, KAWAMURA A. Maximum adhesive force control in super high speed train[C]∥IEEE. Proceedings of the 1997Power Conversion Conference—Nagaoka 1997. New York: IEEE, 1997: 951-954.
    [19]
    TAKAOKA Y, KAWAMURA A. Disturbance observer based adhesion control for Shinkansen[C]∥IEEE. 6th International Workshop on Advanced Motion Control. New York: IEEE, 2000: 169-174.
    [20]
    SUN Li-xia, YAO Jian-wei, HOU Fu-guo. Lateral self-excited vibration mechanism of wheelset subjected to wheel/rail dry friction contact system[J]. China Railway Science, 2012, 33(5): 60-67. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201205012.htm

Catalog

    Article Metrics

    Article views (771) PDF downloads(665) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return