LI Xin, ZUO Hong-fu, CAI Jing. Electrostatic monitoring of gearbox's lubricating oil system[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 72-81. doi: 10.19818/j.cnki.1671-1637.2016.02.009
Citation: LI Xin, ZUO Hong-fu, CAI Jing. Electrostatic monitoring of gearbox's lubricating oil system[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 72-81. doi: 10.19818/j.cnki.1671-1637.2016.02.009

Electrostatic monitoring of gearbox's lubricating oil system

doi: 10.19818/j.cnki.1671-1637.2016.02.009
More Information
  • Author Bio:

    LI Xin(1990-), male, doctoral student, +86-25-84895772, lixin1990@nuaa.edu.cn

    ZUO Hong-fu(1959-), male, professor, PhD, +86-25-84891097, rms@nuaa.edu.cn

  • Received Date: 2015-10-21
  • Publish Date: 2016-04-25
  • The lubricating oil electrostatic monitoring system that was built by a new type 3 499.5 kW gearbox test rig for the wear condition monitoring of gearbox in ground test, was used to complete the full flow abrasive particle electrostatic monitoring test for the lubricating oil systems of gearboxes.The original electrostatic signals were obtained from continuous loading test and accelerated life test.The root-mean-square values of time-domain signals were extracted as the characteristic parameters to represent the particle charging situation in the lubricating oil.The variation tendency of electrostatic signals were analyzed at two test stages respectively and compared with MetalSCAN online monitoring data and the offline result of oil sample spectrum analysis for validation.Analysis result shows that at the continuous loading test stage, the lubricating oil electrostatic signal fluctuates slightly with the change of rotational speed.At accelerated life test stage, the electrostatic signals of gearboxes synchronously change with the torque in a single cycle test.The abnormal wear of gearbox 2 is detected at the ultimate load test stage of the eighth cycle in accelerated life test, while gearbox 1operates normally, which is in accord with the results of MetalSCAN monitoring and the spectrum analysis.The fatigue crack of coupling diaphragm and the gear tooth root pitting of high-speed output shaft in gearbox 2arefound in disassemble gearbox fault detection.This proves electrostatic monitoring method is feasible and effective in wear condition monitoring of the gearbox and establishes the foundation for further implement of gearbox life prediction and installed online monitoring of the actual wind field.

     

  • loading
  • [1]
    MILLER J L, KITALJEVICH D. In-line oil debris monitor for aircraft engine condition assessment[C]//IEEE. Proceedings of 2000IEEE Aerospace Conference. New York: IEEE, 2000: 49-56.
    [2]
    BYINGTON C S, SCHALCOSKY D C. Advances in real time oil analysis[J]. Practicing Oil Analysis Magazine, 2000, 11(2): 28-34.
    [3]
    POWRIE H. Use of electrostatic technology for aero engine oil system monitoring[C]//IEEE. Proceedings of 2000IEEE Aerospace Conference. New York: IEEE, 2000: 57-71.
    [4]
    POWRIE H E G, FISHER C E. Engine health monitoring: towards total prognostics[C]//IEEE. Proceedings of 1999IEEE Aerospace Conference. New York: IEEE, 1999: 11-20.
    [5]
    TASBAZ O D, WOOD R J K, BROWNE M, et al. Electrostatic monitoring of oil lubricated sliding point contacts for early detection of scuffing[J]. Wear, 1999, 230(1): 86-87. doi: 10.1016/S0043-1648(98)00420-7
    [6]
    MORRIS S, WOOD R J K, HARVEY T J, et al. Use of electrostatic charge monitoring for early detection of adhesive wear in oil lubricated contacts[J]. Journal of Tribology, 2002, 124(2): 288-296. doi: 10.1115/1.1398293
    [7]
    SUN J, WOOD R J K, WANG L, et al. Wear monitoring of bearing steel using electrostatic and acoustic emission techniques[J]. Wear, 2005, 259(7-12): 1482-1489. doi: 10.1016/j.wear.2005.02.021
    [8]
    HARVEY T J, WOOD R J K, POWRIE H E G, et al. Charging ability of pure hydrocarbons and lubricating oils[J]. Tribology Transactions, 2004, 47(2): 263-271. doi: 10.1080/05698190490439184
    [9]
    HARVEY T J, MORRIS S, WANG L, et al. Real-time monitoring of wear debris using electrostatic sensing techniques[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2007, 221(1): 27-40. doi: 10.1243/13506501JET196
    [10]
    HARVEY T J, WOOD R J K, POWRIE H E G. Electrostatic wear monitoring of rolling element bearings[J]. Wear, 2007, 263(7-12): 1492-1501. doi: 10.1016/j.wear.2006.12.073
    [11]
    WEN Zhen-hua, ZUO Hong-fu, LI Yao-hua. Gas path debris electrostatic monitoring technology and experiment[J]. Journal of Aerospace Power, 2008, 23(12): 2321-2326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200812028.htm
    [12]
    LI Yao-hua, ZUO Hong-fu, WEN Zhen-hua. Simulated experiment of aircraft engine gas path debris monitoring technology[J]. Acta Aeronoutica et Astronautica Sinica, 2009, 30(4): 604-608. (in Chinese) doi: 10.3321/j.issn:1000-6893.2009.04.004
    [13]
    WEN Zhen-hua, ZUO Hong-fu, LI Yao-hua. New method for aero engine gas path monitoring[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2009, 41(2): 248-252. (in Chinese) doi: 10.3969/j.issn.1005-2615.2009.02.021
    [14]
    LIU Peng-peng, ZUO Hong-fu, SUN Jian-zhong, et al. Study of on-line monitoring of lubricating oil leakage in turbojet engine gas path[J]. Chinese Journal of Scientific Instrument, 2012, 33(11): 2601-2607. (in Chinese) doi: 10.3969/j.issn.0254-3087.2012.11.029
    [15]
    LIU Peng-peng, ZUO Hong-fu, FU Yu, et al. Exhaust gas electrostatic monitoring and gas path fault feature for turbojet engine[J]. Journal of Aerospace Power, 2013, 28(2): 473-480. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201302033.htm
    [16]
    CHEN Zhi-xiong, ZUO Hong-fu, ZHAN Zhi-juan, et al. Study of oil system oil-line debris electrostatic monitoring technology[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3): 446-452. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201203009.htm
    [17]
    HUANG Wen-jie, ZUO Hong-fu. Research on electrostatic sensing for in-line abrasive monitoring in full flow oil system[J]. Acta Aeronoutica et Astronautica Sinica, 2013, 34(8): 1786-1794. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201308005.htm
    [18]
    XU Yi-ming, ZUO Hong-fu, ZHAN Zhi-juan, et al. Optimal design of electrostatic sensor based on sensitivity analysis[J]. Chinese Journal of Scientific Instrument, 2012, 33(5): 1084-1089. (in Chinese) doi: 10.3969/j.issn.0254-3087.2012.05.018
    [19]
    LIU Ruo-chen, ZUO Hong-fu. Research on electrostatic monitoring method of rolling bearings with injected fault under variable operating conditions[J]. Chinese Journal of Scientific Instrument, 2014, 35(10): 2348-2355. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201410026.htm
    [20]
    LIU Ruo-chen, ZUO Hong-fu, SUN Jian-zhong, et al. Electrostatic monitoring of vehicle gearbox[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 50-57, 73. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.01.007
    [21]
    PARASONS R. Electrical double layer: recent experimental and theoretical developments[J]. Chemical Reviews, 1990, 90(5): 813-826. doi: 10.1021/cr00103a008
    [22]
    EBERSBACH S, PENG Z, KESSISSOGLOU N J. The investigation of the condition and faults of a spur gearbox using vibration and wear debris analysis techniques[J]. Wear, 2006, 260(1/2): 16-24.
    [23]
    ZHANG Ying, ZUO Hong-fu, CHEN Zhi-xiong, et al. Electrostatic monitoring of oil lubricated sliding bearing steel with point contacts for detection of initial stage of scuffing[J]. Tribology, 2012, 32(5): 507-515. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201205015.htm
    [24]
    ZHANG Ying, ZUO Hong-fu, BAI Fang. Feature extraction for rolling bearing fault diagnosis by electrostatic monitoring sensors[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229(10): 1887-1903. doi: 10.1177/0954406214550014
    [25]
    BOUSLIMI Y, FOFANA I, HEMMATJOU H, et al. Static electrification assessment of transformer oils in the spinning disc system[C]//IEEE. 2010 International Conference on High Voltage Engineering and Application. New York: IEEE, 2010: 337-340.
    [26]
    ROSSNER M, SINGER H. Measurement of micrometer particles by means of induced charges[C]//IEEE. 1989IEEE Industry Applications Society Annual Meeting. New York: IEEE, 1989: 2233-2238.

Catalog

    Article Metrics

    Article views (892) PDF downloads(879) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return