GE Ji-ping, YAN Xing-fei, WANG Zhi-qiang. Seismic performance of prefabricated assembled pier with grouted sleeve and prestressed reinforcements[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 42-52. doi: 10.19818/j.cnki.1671-1637.2018.02.005
Citation: GE Ji-ping, YAN Xing-fei, WANG Zhi-qiang. Seismic performance of prefabricated assembled pier with grouted sleeve and prestressed reinforcements[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 42-52. doi: 10.19818/j.cnki.1671-1637.2018.02.005

Seismic performance of prefabricated assembled pier with grouted sleeve and prestressed reinforcements

doi: 10.19818/j.cnki.1671-1637.2018.02.005
More Information
  • Author Bio:

    GE Ji-ping(1979-), male, associate professor, PhD, bridgejiping@126.com

  • Received Date: 2017-11-03
  • Publish Date: 2018-04-25
  • According to the mechanical characteristics of prefabricated assembled piers for rail transit, the assembly scheme of grouted sleeve and prestressed reinforcements was put forward.Three different types of piers were designed, including the integral cast-in-place reinforced concrete specimen (RC), the prefabricated and prestressed concrete specimen with strands andgrouted sleeves (PCSS), and the prefabricated and prestressed concrete specimen with screw thread steel bar and grouted sleeve (PCTS).The evaluation results of various pseudo-static evaluation indicators for each type of bridge pier were analyzed by using pseudo-static test method.The seismic performances of various kinds of piers were compared.Test result shows that the indexes of PCSS and PCTS are very similar, and the maximum error is 2.2%.The grouted sleeve shifts the traditional area of plastic hinge up to the top of grouted sleeve, so it shows that the grouted sleeve has local reinforcing effect on the traditional plastic hinge region, and the height of plastic hinge stirrup is advised to add extra one height of grouted sleeve.The concrete axial pressure of specimen increases by 1 time when using prestressed reinforcements, and the corresponding cracking load also increases by approximate 1 time.The mean values of yield load and ultimate load of PCSS are 31% and 34% higher than those of RC, respectively.The average equivalent yield displacement, ultimate displacement and drift ratio are 17%, 13%and 13% higher than those of RC, respectively, but the ductility factors of PCSS decreases by10%.At the same drift ratio of 6%, the mean residual displacement of PCSS is 61% of RC, which shows better re-centering capacity.Compared with RC, the stiffness of PCSS increases by13%.Compared to screw thread steel bar, steel strands can be bent and bundled, and the area is flexible to adjust.So the bridge pier specimens with unbonded prestressed reinforcements and grouted sleeve have better operation and seismic performance, and can be served as the recommended scheme for prefabricated assembled rail pier.

     

  • loading
  • [1]
    LIN Shang-shun, HUANG Qing-wei, CHEN Bao-chun, et al. Design of U-RC composite pier of sea-crossing bridge[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (4): 55-65. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.04.006
    [2]
    HUANG Guo-bin, ZHA Yi-qiang. The construction technique of prefabricated and assembled highway bridge piers in Shanghai[J]. Shanghai Highways, 2014 (4): 1-5. (in Chinese). doi: 10.3969/j.issn.1007-0109.2014.04.001
    [3]
    AMELI M J, PARKS J E, BROWN D N, et al. Seismic evaluation of grouted splice sleeve connections for reinforced precast concrete column-to-cap beam joints in accelerated bridge construction[J]. PCI Journal, 2015, 60 (2): 80-103. doi: 10.15554/pcij.03012015.80.103
    [4]
    YEE A A, ENG H D. Structural and economic benefits of precast/prestressed concrete construction[J]. PCI Journal, 2001, 46 (4): 34-42. doi: 10.15554/pcij.07012001.34.42
    [5]
    HAN Chao, ZHENG Yi-min, ZHAO Yong. Research and application development of grout sleeve splicing for reinforcement[J]. Construction Technology, 2013, 42 (21): 113-117. (in Chinese). doi: 10.7672/sgjs2013210113
    [6]
    WU Tao, LIU Quan-wei, CHENG Ran, et al. Experimental study and stress analysis of mechanical performance of grouted sleeve splice[J]. Engineering Mechanics, 2017, 34 (10): 68-75. (in Chinese). doi: 10.6052/j.issn.1000-4750.2016.05.0357
    [7]
    HUANG Yuan, ZHU Zheng-geng, HUANG Deng, et al. Investigation into half grout sleeve splicing for rebars via static tensile test[J]. Journal of South China University of Technology: Natural Science Edition, 2016, 44 (2): 26-32. (in Chinese). doi: 10.3969/j.issn.1000-565X.2016.02.005
    [8]
    LING J H, RAHMAN A B A, IBRAHIM I S, et al. Behaviour of grouted pipe splice under incremental tensile load[J]. Construction and Building Materials, 2012, 33: 90-98. doi: 10.1016/j.conbuildmat.2012.02.001
    [9]
    KIM Y. A study of pipe splice sleeves for use in precast beam-column connections[D]. Austin: University of Texas at Austin, 2000.
    [10]
    CHEN Xiang-nan. Study on a new-type grouted deformed pipe splice[D]. Nanjing: Southeast University, 2015. (in Chinese).
    [11]
    ZHENG Yong-feng. Research on rebar splicing system by GDPS grout-filled coupling sleeve[D]. Nanjing: Southeast University, 2016. (in Chinese).
    [12]
    SAYADI A A, RAHMAN A B A, SAYADI A, et al. Effective of elastic and inelastic zone on behavior of glass fiber reinforced polymer splice sleeve[J]. Construction and Building Materials, 2015, 80: 38-47. doi: 10.1016/j.conbuildmat.2015.01.064
    [13]
    HENIN E, MORCOUS G. Non-proprietary bar splice sleeve for precast concrete construction[J]. Engineering Structures, 2015, 83: 154-162. doi: 10.1016/j.engstruct.2014.10.045
    [14]
    LIU Hong-tao, YAN Qiu-shi, DU Xiu-li. Study of seismic performance of reinforced concrete frame beam-column joints connected with grouted sleeves[J]. Journal of Building Structures, 2017, 38 (9): 54-61. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201709007.htm
    [15]
    ZHAO Yong, LI Rui, WANG Xiao-feng, et al. Experimental research on seismic behaviors of precast concrete columns with large-diameter and high-yield strength reinforcements splicing by grout-filled coupling sleeves[J]. China Civil Engineering Journal, 2017, 50 (5): 27-35, 71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201705004.htm
    [16]
    WEI Hong-yi, XIAO Wei, WANG Zhi-qiang, et al. Experimental study on seismic performance of precast bridge pier with grouted splice sleeve[J]. Journal of Tongji Universiy: Natural Science, 2016, 44 (7): 1010-1016. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201607005.htm
    [17]
    ZHANG Zhen. Seismic performance research of precast concrete columns in high-rise buildings[D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese).
    [18]
    ZHANG Yi-ping, FENG Bo, XIONG Feng, et al. Experimental study on seismic behavior of precast reinforced concrete short columns with grouted sleeves connecting longitudinal reinforcements[J]. Building Structure, 2015, 45 (15): 81-86. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201515017.htm
    [19]
    PANTELIDES C P, AMELI M J, REAVELEY L D. Evaluation of grouted splice sleeve connections for precast reinforced concrete bridge piers[R]. Fargo: Mountain-Plains Consortium, 2017.
    [20]
    HABER Z B, SAIIDI M S, SANDERS D H. Seismic performance of precast columns with mechanically spliced column-footing connections[J]. ACI Structural Journal, 2014, 111 (3): 639-650.
    [21]
    TAZARV M, SAIIDI M S. Seismic design of bridge columns incorporating mechanical bar splices in plastic hinge regions[J]. Engineering Structures, 2016, 124: 507-520.
    [22]
    WANG Zhi-qiang, WEI Zhang-zhen, WEI Hong-yi, et al. Influences of precast segmental connector forms on seismic performance of bridge pier[J]. China Journal of Highway and Transport, 2017, 30 (5): 74-80. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201705010.htm
    [23]
    LI Rui, ZHENG Yi-min, ZHAO Yong. Experimental research on seismic performance of precast concrete columns with 500MPa reinforcements splicing by grout-filled coupling sleeves[J]. Journal of Building Structures, 2016, 37 (5): 255-263. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201605030.htm
    [24]
    BU Zhan-yu, OU Yu-chen, SONG Jian-wei, et al. Cyclic loading test of unbounded and bonded posttensioned precast segmental bridge columns with circular section[J]. Journal of Bridge Engineering, 2016, 21 (2): 1-17.
    [25]
    GE Ji-ping, YAN Xing-fei, WANG Zhi-qiang. Seismic performance analysis of two-segment bridge columns with prestressing bars[J]. Journal of Railway Science and Engineering, 2017, 14 (11): 2390-2398. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201711017.htm
    [26]
    HOSE Y, SILVA P, SEIBLE F. Development of a performance evaluation database for concrete bridge components and systems under simulated seismic loads[J]. Earthquake Spectra, 2000, 16 (2): 413-442.

Catalog

    Article Metrics

    Article views (1425) PDF downloads(520) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return