Citation: | GE Ji-ping, YAN Xing-fei, WANG Zhi-qiang. Seismic performance of prefabricated assembled pier with grouted sleeve and prestressed reinforcements[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 42-52. doi: 10.19818/j.cnki.1671-1637.2018.02.005 |
[1] |
LIN Shang-shun, HUANG Qing-wei, CHEN Bao-chun, et al. Design of U-RC composite pier of sea-crossing bridge[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (4): 55-65. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.04.006
|
[2] |
HUANG Guo-bin, ZHA Yi-qiang. The construction technique of prefabricated and assembled highway bridge piers in Shanghai[J]. Shanghai Highways, 2014 (4): 1-5. (in Chinese). doi: 10.3969/j.issn.1007-0109.2014.04.001
|
[3] |
AMELI M J, PARKS J E, BROWN D N, et al. Seismic evaluation of grouted splice sleeve connections for reinforced precast concrete column-to-cap beam joints in accelerated bridge construction[J]. PCI Journal, 2015, 60 (2): 80-103. doi: 10.15554/pcij.03012015.80.103
|
[4] |
YEE A A, ENG H D. Structural and economic benefits of precast/prestressed concrete construction[J]. PCI Journal, 2001, 46 (4): 34-42. doi: 10.15554/pcij.07012001.34.42
|
[5] |
HAN Chao, ZHENG Yi-min, ZHAO Yong. Research and application development of grout sleeve splicing for reinforcement[J]. Construction Technology, 2013, 42 (21): 113-117. (in Chinese). doi: 10.7672/sgjs2013210113
|
[6] |
WU Tao, LIU Quan-wei, CHENG Ran, et al. Experimental study and stress analysis of mechanical performance of grouted sleeve splice[J]. Engineering Mechanics, 2017, 34 (10): 68-75. (in Chinese). doi: 10.6052/j.issn.1000-4750.2016.05.0357
|
[7] |
HUANG Yuan, ZHU Zheng-geng, HUANG Deng, et al. Investigation into half grout sleeve splicing for rebars via static tensile test[J]. Journal of South China University of Technology: Natural Science Edition, 2016, 44 (2): 26-32. (in Chinese). doi: 10.3969/j.issn.1000-565X.2016.02.005
|
[8] |
LING J H, RAHMAN A B A, IBRAHIM I S, et al. Behaviour of grouted pipe splice under incremental tensile load[J]. Construction and Building Materials, 2012, 33: 90-98. doi: 10.1016/j.conbuildmat.2012.02.001
|
[9] |
KIM Y. A study of pipe splice sleeves for use in precast beam-column connections[D]. Austin: University of Texas at Austin, 2000.
|
[10] |
CHEN Xiang-nan. Study on a new-type grouted deformed pipe splice[D]. Nanjing: Southeast University, 2015. (in Chinese).
|
[11] |
ZHENG Yong-feng. Research on rebar splicing system by GDPS grout-filled coupling sleeve[D]. Nanjing: Southeast University, 2016. (in Chinese).
|
[12] |
SAYADI A A, RAHMAN A B A, SAYADI A, et al. Effective of elastic and inelastic zone on behavior of glass fiber reinforced polymer splice sleeve[J]. Construction and Building Materials, 2015, 80: 38-47. doi: 10.1016/j.conbuildmat.2015.01.064
|
[13] |
HENIN E, MORCOUS G. Non-proprietary bar splice sleeve for precast concrete construction[J]. Engineering Structures, 2015, 83: 154-162. doi: 10.1016/j.engstruct.2014.10.045
|
[14] |
LIU Hong-tao, YAN Qiu-shi, DU Xiu-li. Study of seismic performance of reinforced concrete frame beam-column joints connected with grouted sleeves[J]. Journal of Building Structures, 2017, 38 (9): 54-61. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201709007.htm
|
[15] |
ZHAO Yong, LI Rui, WANG Xiao-feng, et al. Experimental research on seismic behaviors of precast concrete columns with large-diameter and high-yield strength reinforcements splicing by grout-filled coupling sleeves[J]. China Civil Engineering Journal, 2017, 50 (5): 27-35, 71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201705004.htm
|
[16] |
WEI Hong-yi, XIAO Wei, WANG Zhi-qiang, et al. Experimental study on seismic performance of precast bridge pier with grouted splice sleeve[J]. Journal of Tongji Universiy: Natural Science, 2016, 44 (7): 1010-1016. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201607005.htm
|
[17] |
ZHANG Zhen. Seismic performance research of precast concrete columns in high-rise buildings[D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese).
|
[18] |
ZHANG Yi-ping, FENG Bo, XIONG Feng, et al. Experimental study on seismic behavior of precast reinforced concrete short columns with grouted sleeves connecting longitudinal reinforcements[J]. Building Structure, 2015, 45 (15): 81-86. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201515017.htm
|
[19] |
PANTELIDES C P, AMELI M J, REAVELEY L D. Evaluation of grouted splice sleeve connections for precast reinforced concrete bridge piers[R]. Fargo: Mountain-Plains Consortium, 2017.
|
[20] |
HABER Z B, SAIIDI M S, SANDERS D H. Seismic performance of precast columns with mechanically spliced column-footing connections[J]. ACI Structural Journal, 2014, 111 (3): 639-650.
|
[21] |
TAZARV M, SAIIDI M S. Seismic design of bridge columns incorporating mechanical bar splices in plastic hinge regions[J]. Engineering Structures, 2016, 124: 507-520.
|
[22] |
WANG Zhi-qiang, WEI Zhang-zhen, WEI Hong-yi, et al. Influences of precast segmental connector forms on seismic performance of bridge pier[J]. China Journal of Highway and Transport, 2017, 30 (5): 74-80. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201705010.htm
|
[23] |
LI Rui, ZHENG Yi-min, ZHAO Yong. Experimental research on seismic performance of precast concrete columns with 500MPa reinforcements splicing by grout-filled coupling sleeves[J]. Journal of Building Structures, 2016, 37 (5): 255-263. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201605030.htm
|
[24] |
BU Zhan-yu, OU Yu-chen, SONG Jian-wei, et al. Cyclic loading test of unbounded and bonded posttensioned precast segmental bridge columns with circular section[J]. Journal of Bridge Engineering, 2016, 21 (2): 1-17.
|
[25] |
GE Ji-ping, YAN Xing-fei, WANG Zhi-qiang. Seismic performance analysis of two-segment bridge columns with prestressing bars[J]. Journal of Railway Science and Engineering, 2017, 14 (11): 2390-2398. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201711017.htm
|
[26] |
HOSE Y, SILVA P, SEIBLE F. Development of a performance evaluation database for concrete bridge components and systems under simulated seismic loads[J]. Earthquake Spectra, 2000, 16 (2): 413-442.
|