| Citation: | FENG Zhong-ju, WANG Xi-qing, LI Xiao-xiong, HU Ming-hua, YUAN Feng-bin, YIN Hong-hua, DONG Yun-xiu. Effect of sand liquefaction on mechanical properties of pile foundation under strong earthquake[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 71-84. doi: 10.19818/j.cnki.1671-1637.2019.01.008 |
| [1] |
RAHMANI A, PAK A. Dynamic behavior of pile foundations under cyclic loading in liquefiable soils[J]. Computers and Geotechnics, 2012, 40: 114-126. doi: 10.1016/j.compgeo.2011.09.002
|
| [2] |
CHUNG Y, NAGAE T, HITAKA T, et al. Seismic resistance capacity of high-rise buildings subjected to long-period ground motions: e-defense shaking table test[J]. Journal of Structural Engineering, 2010, 136 (6): 637-644. doi: 10.1061/(ASCE)ST.1943-541X.0000161
|
| [3] |
LING Xian-zhang. E-defense and research tests[J]. Journal of Earthquake Engineering and Engineering Vibration, 2008, 28 (4): 111-116. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200804016.htm
|
| [4] |
CHAU K T, SHEN C Y, GUO X. Nonlinear seismic soil-pile-structure interactions: shaking table tests and FEM analyses[J]. Soil Dynamics and Earthquake Engineering, 2009, 29 (2): 300-310. doi: 10.1016/j.soildyn.2008.02.004
|
| [5] |
DASH S R, BHATTACHARYA S, BLAKEBOROUGH A. Bending-buckling interaction as a failure mechanism of piles in liquefiable soils[J]. Soil Dynamics and Earthquake Engineering, 2010, 30 (1/2): 32-39.
|
| [6] |
WANG Qing-qiao, WEI Xiao, WANG Jun-jie, et al. Characteristics and mechanisms of earthquake damage of bridge pile foundation[J]. Technology for Earthquake Disaster Prevention, 2009, 4 (2): 167-173. (in Chinese). doi: 10.3969/j.issn.1673-5722.2009.02.005
|
| [7] |
TANG Liang, LING Xian-zhang, XU Peng-ju. Shaking table test on seismic response of pile groups of bridges in liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (5): 672-680. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201005006.htm
|
| [8] |
LING Xian-zhang, WANG Dong-sheng, WANG Zhi-qiang, et al. Large-scale saking table model test of dynamic soil-pile-bridge structure interaction in ground of liquefaction[J]. China Civil Engineering Journal, 2004, 37 (11): 67-72. (in Chinese). doi: 10.3321/j.issn:1000-131X.2004.11.011
|
| [9] |
LI Pei-zhen, CHENG Lei, LYU Xi-lin, et al. Shaking table testing on high-rise buildings considering liquefiable soil-structure interaction[J]. Journal of Tongji University (Natural Science), 2010, 38 (4): 467-474. (in Chinese). doi: 10.3969/j.issn.0253-374x.2010.04.001
|
| [10] |
LIYANAPATHIRANA D S, POULOS H G. Seismic lateral response of piles in liquefying soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131 (12): 1466-1479. doi: 10.1061/(ASCE)1090-0241(2005)131:12(1466)
|
| [11] |
WANG Rui, ZHANG Jian-min, ZHANG Ga. Analysis of failure of piled foundation due to lateral spreading in liquefied soils[J]. Rock and Soil Mechanics, 2011, 32 (S1): 501-506. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1090.htm
|
| [12] |
SU Lei, TANG Liang, LING Xian-zhang, et al. Pile response to liquefaction-induced lateral spreading: a shake-table investigation[J]. Soil Dynamics and Earthquake Engineering, 2016, 82: 196-204. doi: 10.1016/j.soildyn.2015.12.013
|
| [13] |
HUANG Zhan-fang, BAI Xiao-hong. Shaking table model test for seismic response of a pile group foundation with liquefiable sandy soil[J]. Journal of Vibration and Shock. 2013, 32 (18): 153-158. (in Chinese). doi: 10.3969/j.issn.1000-3835.2013.18.029
|
| [14] |
XIA Xiu-shen, LI Jian-zhong. Effect of near-field ground motion on the rocking response of tall pier with pile foundations[J]. Journal of Harbin Institute of Technology, 2014, 46 (4): 82-86. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201404014.htm
|
| [15] |
ZHANG Ze-han, QIAN De-ling, DAI Qi-quan, et al. Shaking table test of super high-rise structure on liquefied ground[J]. Journal of Building Structures, 2016, 37 (7): 114-120. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201607014.htm
|
| [16] |
DAI Qi-quan, QIAN De-ling, ZHANG Ze-han, et al. Experimental research on dynamic response of pile group of super highrise building on liquefied ground[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (12): 2572-2579. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201512021.htm
|
| [17] |
KONG Jin-xiu. Effects of ground motion characteristics on dynamic response of bridge pile foundations in liquefiable soils[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese).
|
| [18] |
ZHANG Xiao-yu, TANG Liang, LING Xian-zhang, et al. Analysis on characteristics of dynamic p-y curves for soil-pile interaction in liquefiable ground[J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34 (5): 619-625. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201405014.htm
|
| [19] |
FENG Zhong-ju, XIE Yong-1i. Simulation test of large diameter bored hollow pile of prestressing force concrete[J]. Journal of Chang'an University (Natural Science Edition), 2005, 25 (2): 50-54. (in Chinese). doi: 10.3321/j.issn:1671-8879.2005.02.012
|
| [20] |
FENG Zhong-ju, REN Wen-feng, LI Jin. Bearing capacity of post grouting pile foundation[J]. Journal of Chang'an University (Natural Science Edition), 2006, 26 (3): 35-38. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200603008.htm
|
| [21] |
LI Jin, FENG Zhong-ju, XIE Yong-li. Numerical simulation of large diameter hollow pile bearing performance[J]. Journal of Chang'an University (Natural Science Edition), 2004, 24 (4): 36-39. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200404009.htm
|
| [22] |
LAO Wei-kang, ZHOU Li-yun, WANG Zhao. Field test and theoretical analysis on flexible large-diameter rock-socketed steel pipe piles under lateral load[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23 (10): 1770-1777. (in Chinese). doi: 10.3321/j.issn:1000-6915.2004.10.033
|
| [23] |
FENG Shi-lun, WANG Jian-hua. Shake table test on pile foundation in saturated sand[J]. Journal of Tianjin University, 2006, 39 (8): 951-956. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX200608012.htm
|
| [24] |
WANG Jian-hua, FENG Shi-lun. The shake table test on soil-pile interaction[J]. Chinese Journal of Geotechnical Engineering, 2004, 26 (5): 616-618. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200405007.htm
|
| [25] |
ZHANG Xin-lei, WANG Zhi-hua, XU Zhen-wei, et al. Shaking table tests on flow effects of liquefied sands[J]. Rock and Soil Mechanics, 2016, 37 (8): 2347-2352. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608029.htm
|
| [26] |
JANALIZADEH A, ZAHMATKESH A. Lateral response of pile foundations in liquefiable soils[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7 (5): 532-539.
|
| [27] |
FENG Shi-lun, WANG Jian-hua, GUO Jin-tong. Seismic resistance of pile foundation in liquefaction layer[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24 (8): 1402-1406. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200508026.htm
|
| [28] |
WEI Xiao, FAN Li-chu, WANG Jun-jie. Shake table test on soil-pile-structure interaction[J]. China Civil Engineering Journal, 2002, 35 (4): 91-97. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200204016.htm
|
| [29] |
DONG Yun-xiu, FENG Zhong-ju, HAO Yu-meng, et al. Experiment on bearing capacity of bridge pile foundations in karst area sand reasonable rock-socketed depth[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (6): 27-36. (in Chinese). http://transport.chd.edu.cn/article/id/201806004
|
| [30] |
SOMERVILLE P. Magnitude scaling of the near fault rupture directivity pulse in near-fault ground motions[R]. Pasadena: URS Group, Inc., 2003.
|
| [31] |
TAZARV M. Quantitative identification of near-fault ground motion using Baker's method, an application for March 2011 Japan M9.0 Earthquake[R]. Ottawa: Carleton University, 2011.
|
| [32] |
BAKER J W. Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bulletin of the Seismological Society of America, 2007, 97 (5): 1486-1501.
|
| [33] |
CHAI J F, LIAO W I, TENG T J, et al. Current development of seismic design code to consider the near-fault effect in Taiwan[J]. Earthquake Engineering and Engineering Seismology, 2001, 3 (2): 47-56.
|