| Citation: | LIU Yu-xuan, WU Sheng-chuan, LI Cun-hai, KANG Guo-zheng, LIANG Shu-lin. Fatigue performance and life assessment of railway axle with inside axle box[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 100-108. doi: 10.19818/j.cnki.1671-1637.2019.03.011 |
| [1] |
LI Bing-hua, DU Xin. Fatigue design of wheel axles of locomotives and rolling stocks with high speed[J]. Railway Locomotive and Motor Car, 2000 (1): 14-20. (in Chinese). doi: 10.3969/j.issn.1003-1820.2000.01.005
|
| [2] |
ZERBST U, BERETTA S, KÖHLER G, et al. Safe life and damage tolerance aspects of railway axles—a review[J]. Engineering Fracture Mechanics, 2013, 98 (1): 214-271.
|
| [3] |
SMITH R A, HILLMANSEN S. A brief historical overview of the fatigue of railway axles[J]. Journal of Rail and Rapid Transit, 2004, 218 (4): 267-277. doi: 10.1243/0954409043125932
|
| [4] |
MAKINO T, KATO T, HIRAKAWA K. Review of the fatigue damage tolerance of high-speed railway axles in Japan[J]. Engineering Fracture Mechanics, 2011, 78: 810-825. doi: 10.1016/j.engfracmech.2009.12.013
|
| [5] |
WU Sheng-chuan, ZHANG Si-qi, XU Zhong-wei, et al. Cyclic plastic strain based damage tolerance for railway axles in China[J]. International Journal of Fatigue, 2016, 93: 64-70. doi: 10.1016/j.ijfatigue.2016.08.006
|
| [6] |
GÄNSER H P, MAIERHOFER J, TICHY R, et al. Damage tolerance of railway axles—the issue of transferability revisited[J]. International Journal of Fatigue, 2016, 86: 52-57. doi: 10.1016/j.ijfatigue.2015.07.019
|
| [7] |
WU Yi, LIU Xin-gui, XIANG Bin, et al. Experimental study on the comprehensive performance of LZ45CrV axle steel for heavy haul freight car[J]. China Railway Science, 2015, 36 (2): 68-72. (in Chinese). doi: 10.3969/j.issn.1001-4632.2015.02.10
|
| [8] |
ZHU Jing, GU Jia-lin, ZHOU Hui-hua, et al. Material selection and trial manufacture for localization of hollow axle for high speed train[J]. China Railway Science, 2015, 36 (2): 60-67. (in Chinese). doi: 10.3969/j.issn.1001-4632.2015.02.09
|
| [9] |
HUANG Guo, HUANG Hai-ming, WANG Chao, et al. Experimental study on the fatigue properties of 45# axle steel[J]. China Railway Science, 2013, 34 (4): 71-76. (in Chinese). doi: 10.3969/j.issn.1001-4632.2013.04.12
|
| [10] |
LI Cui-hai, WU Sheng-chuan, LIU Yu-xuan. Improved sample polymerization principle and the applications onto fatigue assessment of railway vehicle structures[J]. Journal of Mechanical Engineering, 2019, 55 (4): 42-53. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201904006.htm
|
| [11] |
WU Sheng-chuan, XU Zhong-wei, KANG Guo-zheng, et al. Probabilistic fatigue assessment for high-speed railway axles due to foreign object damages[J]. International Journal of Fatigue, 2018, 117: 90-100. doi: 10.1016/j.ijfatigue.2018.08.011
|
| [12] |
SONG Zhong-ming, HUANG Jin, FENG Jian, et al. Formation mechanisms of cracks in LZ50 steel axles for railway vehicles[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2015, 51 (5): 315-319. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LHJW201505005.htm
|
| [13] |
XU Zhong-wei, WU Sheng-chuan, DUAN Hao, et al. Fatigue crack growth life prediction of railway hollow axis with flaws under press fitting and measured dynamic stress spectrum[J]. Scientia Sinica Technologica, 2017, 47 (6): 656-665. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201706008.htm
|
| [14] |
WANG Yu-guang, WU Sheng-chuan, LI Zhong-wen, et al. A low cycle fatigue characteristics based residual life prediction model for railway axles with flaws[J]. Journal of the China Railway Society, 2018, 40 (11): 27-32. (in Chinese). doi: 10.3969/j.issn.1001-8360.2018.11.004
|
| [15] |
YANG Bing, LIAO Zhen, MA Bai-quan, et al. Comparison of short fatigue crack behaviors for LZ50 axle steel under two loading frequencies[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (6): 46-55. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.06.006
|
| [16] |
JIN Xin-can, ZHANG Xiao-bin, ZHOU Kang. Study on load spectrum compilation and fatigue strength of high-speed train wheel axle[J]. Journal of Beijing Jiaotong University, 2018, 42 (4): 113-120. (in Chinese). doi: 10.3969/j.issn.1672-8106.2018.04.012
|
| [17] |
POKORN HUTAHL Residual fatigue lifetime estimation of railway axles for various loading spectra[J]. Theoretical and Applied Fracture Mechanics, 2016, 82: 25-32.
|
| [18] |
DENG Tie-song, WU Lei, LING Liang, et al. Comparison of curving performance of linear induction motor metro vehicles with inside and outside axle boxes[J]. Computer Aided Engineering, 2015, 24 (1): 12-17, 21. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201501003.htm
|
| [19] |
ZHAI Wan-ming, JIN Xue-song, ZHAO Yong-xiang. Some typical mechanics peoblems in high-speed railway engineering[J]. Advances in Mechanics, 2010, 40 (4): 358-374. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201004003.htm
|
| [20] |
LUKE M, VARFOLOMEEV I, LÜTKEPOHL K, et al. Fatigue crack growth in railway axles: assessment concept and validation tests[J]. Engineering Fracture Mechanics, 2011, 78 (5): 714-730. doi: 10.1016/j.engfracmech.2010.11.024
|
| [21] |
WU Sheng-chuan, XU Zhong-wei, YU Cheng, et al. A physically short fatigue crack growth approach based on low cycle fatigue properties[J]. International Journal of Fatigue, 2017, 103 (6): 185-195.
|
| [22] |
MADIA M, BERETTA S, ZERBST U. An investigation on the influence of rotary bending and press fitting on stress intensity factors and fatigue crack growth in railway axles[J]. Engineering Fracture Mechanics, 2008, 75 (8): 1906-1920. doi: 10.1016/j.engfracmech.2007.08.015
|
| [23] |
WATSON A S, TIMMIS K. A method of estimating railway axle stress spectra[J]. Engineering Fracture Mechanics, 2011, 78 (5): 836-847.
|
| [24] |
TRAUPE M, JENNE S, LÜTKEPOHL K, et al. Experimental validation of inspection intervals for railway axles accompanying the engineering process[J]. International Journal of Fatigue, 2016, 86: 44-51. doi: 10.1016/j.ijfatigue.2015.09.020
|
| [25] |
WU Sheng-chuan, XU Zhong-wei, LIU Yu-xuan, et al. On the residual life assessment of high-speed railway axles due to induction hardening[J]. International Journal of Rail Transportation, 2018, 6 (4): 218-232. doi: 10.1080/23248378.2018.1427008
|
| [26] |
WU Sheng-chuan, LIU Yu-xuan, LI Cun-hai, et al. On the fatigue performance and residual life of intercity railway axles with inside axle boxes[J]. Engineering Fracture Mechanics, 2018, 197: 176-191. doi: 10.1016/j.engfracmech.2018.04.046
|
| [27] |
BERETTA S, REGAZZI D. Probabilistic fatigue assessment for railway axles and derivation of a simple format for damage calculations[J]. International Journal of Fatigue, 2016, 86: 13-23.
|
| [28] |
ZHOU Su-xia. Theory and method research on damage tolerance of the hollow axles of high speed trains[D]. Beijing: Beijing Jiaotong University, 2009. (in Chinese).
|
| [29] |
MAIERHOFER J, PIPPAN R, GÄNSER H P. Modified NASGRO equation for physically short cracks[J]. International Journal of Fatigue, 2014, 59: 200-207. doi: 10.1016/j.ijfatigue.2013.08.019
|
| [30] |
ZHOU Su-xia, LI Fu-sheng, XIE Ji-long, et al. Equivalent stress evaluation of the load spectrum measured on the EMU axle based on damage tolerance[J]. Journal of Mechanical Engineering, 2015, 51 (8): 131-136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201508019.htm
|