| Citation: | CEHN Jun, TIAN Chao-jun, ZHAO Qing-mei, LI Xiao-wei. Bus passenger classification method based on spatial and temporal behavior regularity mining[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 274-285. doi: 10.19818/j.cnki.1671-1637.2021.05.023 |
| [1] |
KIEU L M, OU Yu-ming, CAI Chen. Large-scale transit market segmentation with spatial-behavioural features[J]. Transportation Research Part C, 2018, 90: 97-113. doi: 10.1016/j.trc.2018.03.003
|
| [2] |
FAROQI H, MESBAH M, KIM J, et al. A model for measuring activity similarity between public transit passengers using smart card data[J]. Travel Behavior and Society, 2018, 13: 11-25. doi: 10.1016/j.tbs.2018.05.004
|
| [3] |
ZOU Qing-ru, ZHAO Peng, YAO Xiang-ming. Passenger classification for urban rail transit by mining smart card data[J]. Journal of Transport Systems Engineering and Information Technology, 2018, 18(1): 223-230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201801034.htm
|
| [4] |
SHAO Feng-jing, SUI Yi, YU Xiang, et al. Spatio-temporal travel patterns of elderly people—a comparative study based on buses usage in Qingdao, China[J]. Journal of Transport Geography, 2019, 76: 178-190. doi: 10.1016/j.jtrangeo.2019.04.001
|
| [5] |
TEICHERT T, SHEHU E, WARTBURG I V. Customer segmentation revisited: the case of airline industry[J]. Transportation Research Part A, 2008, 42(1): 227-242.
|
| [6] |
WEN C H, LAI S C. Latent class models of international air carrier choice[J]. Transportation Research Part E, 2010, 46(2): 211-221. doi: 10.1016/j.tre.2009.08.004
|
| [7] |
QIAN Bing-yi, SHUAI Bin, CHEN Chong-shuang, et al. Study on subdivision of DPL passenger market based on mixed regression model[J]. Railway Transport and Economy, 2013, 36(1): 60-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201401015.htm
|
| [8] |
PARK J Y, KIM D J, LIM Y. Use of smart card data to define public transit use in Seoul, South Korea[J]. Transportation Research Record, 2008(2063): 3-9.
|
| [9] |
PELLETIER M P, TRÉPANIER M, MORENCY C. Smart card data use in public transit: a literature review[J]. Transportation Research Part C: Emerging Technologies, 2011, 19: 557-568. doi: 10.1016/j.trc.2010.12.003
|
| [10] |
CHEN C, MA Jing-tao, SUSILO Y, et al. The promises of big data and small data for travel behavior (aka human mobility) analysis[J]. Transportation Research Part C, 2016, 68: 285-299. doi: 10.1016/j.trc.2016.04.005
|
| [11] |
LI Y T, IWAMOTO T, SCHMÖCKER J D, et al. Analyzing long-term travel behaviour: a comparison of smart card data and graphical usage patterns[J]. Transportation Research Procedia, 2018, 32: 34-43. doi: 10.1016/j.trpro.2018.10.005
|
| [12] |
KUMAR P, KHANI A, HE Qing. A robust method for estimating transit passenger trajectories using automated data[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 731-747. doi: 10.1016/j.trc.2018.08.006
|
| [13] |
ZHAO Zhan, KOUTSOPOULOS H N, ZHAO Jin-hua. Discovering latent activity patterns from transit smart card data: a spatiotemporal topic model[J]. Transportation Research Part C: Emerging Technologies, 2020, 116: 102627. doi: 10.1016/j.trc.2020.102627
|
| [14] |
LONG Ying, LIU Xing-jian, ZHOU Jian-ping, et al. Early birds, night owls, and tireless/recurring itinerants: an exploratory analysis of extreme transit behaviors in Beijing, China[J]. Habitat International, 2016, 57: 223-232. doi: 10.1016/j.habitatint.2016.08.004
|
| [15] |
SUN Shi-chao, ZHUANG Bin, HUANG Wei. An approach to the identification of commuters based on machine learning of smart card data[J]. Journal of Transportation Engineering, 2017, 17(1): 58-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201701013.htm
|
| [16] |
LIANG Quan, WENG Jian-cheng, LIN Peng-fei, et al. Public transport commuter identification based on individual travel graph[J]. Journal of Transport Systems Engineering and Information Technology, 2018, 18(2): 100-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201802016.htm
|
| [17] |
OETRGA-TONG M A. Classification of London's public transport users using smart card data[D]. Cambridge: Massachusetts Institute of Technology, 2013.
|
| [18] |
LATHIA N, SMITH C, FROEHLICH J, et al. Individuals among commuters: building personalised transport information services from fare collection systems[J]. Pervasive Mobile Computing, 2013, 9(5): 643-664. doi: 10.1016/j.pmcj.2012.10.007
|
| [19] |
YANG Chao, YAN Fen-fan, UKKUSURI S V. Unraveling traveler mobility patterns and predicting user behavior in the Shenzhen metro system[J]. Transportmetrica A: Transport Science, 2018, 14(7): 576-597. doi: 10.1080/23249935.2017.1412370
|
| [20] |
BRIAND A S, CÔME E, TRÉPANIER M, et al. Analyzing year-to-year changes in public transport passenger behavior using smart card data[J]. Transportation Research Part C: Emerging Technologies, 2017, 79: 274-289. doi: 10.1016/j.trc.2017.03.021
|
| [21] |
LI H, AGARD B, TRÉPANIER M. A classification of public transit users with smart card data based on time series distance metrics and a hierarchical clustering method[J]. Transportmetrica A: Transport Science, 2020, 16(1): 56-75. doi: 10.1080/23249935.2018.1479722
|
| [22] |
MA Xiao-lei, WU Yao-jan, WANG Yin-hai, et al. Mining smart card data for transit riders' travel patterns[J]. Transport Research Part C: Emerging Technologies, 2013, 36: 1-12. doi: 10.1016/j.trc.2013.07.010
|
| [23] |
KIEU L M, BHASKAR A, CHUNG E. Passenger segmentation using smart card data[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(3): 1537-1548. doi: 10.1109/TITS.2014.2368998
|
| [24] |
MA Xiao-lei, LIU Cong-cong, WEN Hui-min, et al. Understanding commuting patterns using transit smart card data[J]. Journal of Transport Geography, 2017, 58: 135-145. doi: 10.1016/j.jtrangeo.2016.12.001
|
| [25] |
AGARD B, MORENCY C, TRÉPANIER M. Mining public transport user behavior from smart card data[J]. IFAC Proceedings Volumes, 2006, 39(3): 399-404.
|
| [26] |
CHEN Xiu-yuan. Analyzing classification of bus passengers based on their trip characteristics[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
|
| [27] |
BASU A A. Data-driven customer segmentation and personalized information provision in public transit[D]. Cambridge: Massachusetts Institute of Technology, 2018.
|
| [28] |
MORI U, MENDIBURU A, LOZANO J A. Distance measures for time series in R: the TSdist package[J]. The R Journal, 2016, 8(2): 451-459. doi: 10.32614/RJ-2016-058
|
| [29] |
ZHAO Jin-hua, RAHBEE A, WILSON N H M. Estimating a rail passenger trip origin-destination matrix using automatic data collection systems[J]. Computer-Aided Civil and Infrastructure Engineering, 2007(22): 376-387.
|
| [30] |
CHEN Jun, YANG Dong-yuan. Method for identifying transfer stops of passengers with smart card integrating intelligent bus dispatching data[J]. Journal of Chang'an University (Natural Science Edition), 2013, 33(4): 96-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201304015.htm
|
| [31] |
CHEN Jun, YANG Dong-yuan. Estimating smart card commuters origin-destination distribution based on ATPS data[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13(4): 47-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201304007.htm
|