| Citation: | ZHUANG Nan-jian, ZHAO Li-ya, GU Run-ping, WEI Zhi-qiang. Effects of lidar location on retrieval of aircraft wake vortex characteristic parameter[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 229-239. doi: 10.19818/j.cnki.1671-1637.2022.01.019 |
| [1] |
HAN Hong-rong, LI Na, WEI Zhi-qiang. Safety analysis of aircraft encountering wake vortex[J]. Journal of Traffic and Transportation Engineering, 2012, 12(1): 45-49. (in Chinese) doi: 10.3969/j.issn.1671-1637.2012.01.008
|
| [2] |
XU Xiao-hao, ZHAO Hong-sheng, WANG Zhen-yu. Overview of wake vortex separation reduction systems[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4): 655-662. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201004002.htm
|
| [3] |
WEI Zhi-qiang, QU Qiu-lin, LIU Wei, et al. Review on the artificial calculating methods for aircraft wake vortex flow field parameters[J]. Acta Aerodynamica Sinica, 2019, 37(1): 33-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201901003.htm
|
| [4] |
FENG Li-tian, ZHOU Jie, FAN Qi, et al. Three-dimensional lidar for wind shear detection and early warning in civil aviation airport[J]. Acta Photonica Sinica, 2019, 48(5): 186-196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201905022.htm
|
| [5] |
LI Jian-bing, GAO Hang, WANG Tao, et al. A survey of the scattering characteristics and detection of aircraft wake vortices[J]. Journal of Radars, 2017, 6(6): 653-672. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDAX201706010.htm
|
| [6] |
PAN Wei-jun, LUAN Tian, KANG Xian-biao, et al. Progress in observational studies of aircraft wake vortex in ground proximity[J]. Acta Aerodynamica Sinica, 2019, 37(4): 511-521. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201904001.htm
|
| [7] |
XU Shi-long, HU Yi-hua, ZHAO Nan-xiang. Extrication of wake vortex parameters based on lidar echo[J]. Acta Photonica Sinica, 2013, 42(1): 54-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201301010.htm
|
| [8] |
HU Yi-hua, WU Yong-hua. Study on the characteristic of aircraft wake vortex and lidar detection technique[J]. Infrared and Laser Engineering, 2011, 40(6): 1063-1069. (in Chinese) doi: 10.3969/j.issn.1007-2276.2011.06.015
|
| [9] |
PAN Wei-jun, ZHANG Qing-yu, ZHANG Qiang, et al. Identification method of aircraft wake vortex based on Doppler lidar[J]. Laser Technology, 2019, 43(2): 233-237. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS201902016.htm
|
| [10] |
PAN Wei-jun, DUAN Ying-jie, YI Wen-hao, et al. Research on aircraft wake vortex recognition based on YOLO artificial intelligence[J]. Journal of Ordnance Equipment Engineering, 2020, 41(11): 242-247. (in Chinese) doi: 10.11809/bqzbgcxb2020.11.044
|
| [11] |
WANG Xiao-ye, WU Song-hua, LIU Xiao-ying, et al. Observation of aircraft wake vortex based on coherent Doppler lidar[J]. Acta Optica Sinica. 2021, 41(9): 9-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202109002.htm
|
| [12] |
WU Song-hua, ZHAI Xiao-chun, LIU Bing-yi. Aircraft wake vortex and turbulence measurement under near-ground effect using coherent Doppler lidar[J]. Optics Express, 2019, 27(2): 1142-1163. doi: 10.1364/OE.27.001142
|
| [13] |
WU Song-hua, LIU Bing-yi, LIU Jin-tao. Aircraft wake vortex measurement with coherent Doppler lidar[J]. EPJ Web of Conferences, 2016, DOI: 10.1051/epjconf/201611914008.
|
| [14] |
LIU Xiao-ying, ZHANG Xin-yu, ZHAI Xiao-chun, et al. Observation of aircraft wake vortex evolution under crosswind conditions by pulsed coherent Doppler lidar[J]. Atmosphere, 2020, DOI: 10.3390/atmos12010049.
|
| [15] |
HON K, CHAN P. Aircraft wake vortex observations in Hong Kong[J]. Journal of Radars, 2017, 6(6): 709-718. https://www.researchgate.net/publication/322491582_Aircraft_wake_vortex_observations_in_Hong_Kong
|
| [16] |
CHUN S, BING L J, LIN Z F, et al. Two-step locating method for aircraft wake vortices based on Gabor filter and velocity range distribution[J]. IET Radar, Sonar and Navigation, 2020, 14(12): 1958-1967. doi: 10.1049/iet-rsn.2020.0319
|
| [17] |
PENKIN M S, BOREISHO A S, KONYAEV M A, et al. Detection of the aircraft vortex wake with the aid of a coherent Doppler lidar[J]. Journal of Engineering Physics and Thermophysics, 2017, 90(4): 951-957. doi: 10.1007/s10891-017-1642-6
|
| [18] |
YOSHIKAWA E, MATAYOSHI N. Aircraft wake vortex retrieval method on lidar lateral range-height indicator observation[J]. AIAA Journal, 2017, 55(7): 2269-2278. doi: 10.2514/1.J055224
|
| [19] |
SMALIKHO I N, BANAKH V A, FALITS A V. Measurements of aircraft wake vortex parameters by a stream line Doppler lidar[J]. Atmospheric and Oceanic Optics, 2017, 30(6): 588-595. doi: 10.1134/S1024856017060136
|
| [20] |
FREHLICH R, SHARMAN R. Maximum likelihood estimates of vortex parameters from simulated coherent Doppler lidar data[J]. American Meteorological Society, 2005, 22(2): 117-130. https://journals.ametsoc.org/view/journals/atot/22/2/jtech-1695_1.xml
|
| [21] |
SMALIKHO I N, BANAKH V A, HOLZÄPFEL F, et al. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar[J]. Optics Express, 2015, 23(19): 1194-1207. doi: 10.1364/OE.23.0A1194
|
| [22] |
SMALIKHO I N, BANAKH V A. Estimation of aircraft wake vortex parameters from data measured with a 1.5-μm coherent Doppler lidar[J]. Optics Letters, 2015, 40(14): 3408-3411. doi: 10.1364/OL.40.003408
|
| [23] |
GAO Hang, LI Jian-bing, CHAN P W, et al. Parameter- retrieval of dry-air wake vortices with a scanning Doppler lidar[J]. Optics Express, 2018, 26(13): 16377-16392. doi: 10.1364/OE.26.016377
|
| [24] |
KÖPP F, RAHM S, SMALIKHO I. Characterization of aircraft wake vortices by 2-μm pulsed Doppler lidar[J]. American Meteorological Society, 2004, 21(2): 194-206. https://journals.ametsoc.org/view/journals/atot/21/2/1520-0426_2004_021_0194_coawvb_2_0_co_2.xml
|
| [25] |
HOLZÄPFEL F, GERZ T, KÖPP F, et al. Strategies for circulation evaluation of aircraft wake vortices measured by lidar[J]. American Meteorological Society, 2003, 20(8): 1183-1195. https://www.researchgate.net/publication/224780255_Strategies_for_Circulation_Evaluation_of_Aircraft_Wake_Vortices_Measured_by_Lidar
|
| [26] |
WU Yong-hua, HU Yi-hua, DAI Ding-chuan, et al. Research on the technique of aircraft wake vortex detection based on 1.5 μm Doppler lidar[J]. Acta Photonica Sinica, 2011, 40(6): 811-817. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201106004.htm
|
| [27] |
ZHAO Li-ya, GU Run-ping, WEI Zhi-qiang. Calculation of characteristic parameters of dynamic wake vortex based on lidar echo[J]. Journal of Wuhan University of Science and Technology, 2018, 41(5): 388-394. (in Chinese) doi: 10.3969/j.issn.1674-3644.2018.05.012
|
| [28] |
GU Run-ping, ZHAO Li-ya, WEI Zhi-qiang. Study on estimation method of characteristic parameters of aircraft wake vortex[J]. Aeronautical Computing Technique, 2017, 47(6): 14-17, 23. (in Chinese) doi: 10.3969/j.issn.1671-654X.2017.06.004
|
| [29] |
LI Jian-bing, SHEN Chun, GAO Hang, et al. Path integration (PI) method for the parameter-retrieval of aircraft wake vortex by lidar[J]. Optics Express, 2020, 28(3): 4286-4306. doi: 10.1364/OE.382968
|
| [30] |
GAO Hang, LI Jian-bing, CHAN P W, et al. Parameter retrieval of aircraft wake vortex based on its max-min distribution of Doppler velocities measured by alidar[J]. The Journal of Engineering, 2019, 2019(20): 6852-6855. doi: 10.1049/joe.2019.0539
|
| [31] |
SHEN Chun, GAO Hang, WANG Xue-song, et al. Aircraft wake vortex parameter-retrieval system based on lidar[J]. Journal of Radars, 2020, 9(6): 1032-1044. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDAX202006008.htm
|