Volume 23 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
YANG Fei, TU Wen-jing, WEI Zi-long, KE Zai-tian, LIU Xiu-bo, YANG Ai-hong, WANG Shi-lei. Review on development status of inspection equipment for track maintenance, communication and signaling, and power supply of railway[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 47-69. doi: 10.19818/j.cnki.1671-1637.2023.01.004
Citation: YANG Fei, TU Wen-jing, WEI Zi-long, KE Zai-tian, LIU Xiu-bo, YANG Ai-hong, WANG Shi-lei. Review on development status of inspection equipment for track maintenance, communication and signaling, and power supply of railway[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 47-69. doi: 10.19818/j.cnki.1671-1637.2023.01.004

Review on development status of inspection equipment for track maintenance, communication and signaling, and power supply of railway

doi: 10.19818/j.cnki.1671-1637.2023.01.004
Funds:

National Natural Science Foundation of China 52278465

Science and Technology Research and Development Project of China State Railway Group Co., Ltd P2021T013

More Information
  • Author Bio:

    YANG Fei(1985-), male, associate professor, 13811807268@163.com

    TU Wen-jing(1983-), male, senior engineer, nctwj@163.com

  • Received Date: 2022-07-20
    Available Online: 2023-03-08
  • Publish Date: 2023-02-25
  • The perspectives of the type and object of inspection equipment for track maintenance, communication and signaling, and power supply of railway were adopted to review the general development of inspection equipment in different countries. The development histories, technical features, and application situations of comprehensive inspection trains, specialized inspection trains, and on-board inspection devices were discussed. The differences of same type of inspection equipment in China and abroad in design concept, function integration, operation and maintenance were compared, and the shortcomings of Chinese inspection equipment were analyzed. On this basis, the development tendency of the Chinese inspection equipment was distilled by learning advanced experience from other countries and adapting it to Chinese actual situation. Research results show that substantial advances have been achieved by the Chinese inspection techniques for track maintenance, communication and signaling, and power supply of railway. Some fields have reached or approached the world advanced level, nevertheless, actual operation demands still cannot be met by these techniques, mainly manifested in inadequate inspection items, low automation and intelligence level of inspection equipment, insufficient usage of inspection data, and high inspection cost. Due to the above problems, the development of inspection equipment should be oriented towards comprehensive inspection functions, miniaturized and modularized inspection equipment, and intelligent and unmanned inspection process, thereby fostering a modern inspection equipment system featuring high reliability, a full range of inspection items, and accurate inspection data. This system is expected to guide the condition-based maintenance and life cycle management of railway infrastructure.

     

  • loading
  • [1]
    王同军. 抓住重要战略机遇期开创铁路建设高质量持续健康发展新局面[J]. 中国铁路, 2019(2): 7-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201902002.htm

    WANG Tong-jun. Seize important opportunities to create a new situation of high-quality and sustainable development for railways[J]. China Railway, 2019(2): 7-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201902002.htm
    [2]
    FURUKAWA A. Recent trends in track inspection and monitoring technologies[J]. Quarterly Report of RTRI, 2015, 56(1): 1-4. doi: 10.2219/rtriqr.56.1
    [3]
    MATSUDA H, TAKIKAWA M, NANMOKU T, et al. Track test monitoring system using a multipurpose experimental train[J]. WIT Transactions on the Built Environment, 2010, 114: 701-708.
    [4]
    NICHOHA V, STOROZH V, MATⅡESHYN Y. Development of modern methods and directions of rapid diagnostics of railway tracks defects by television methods[C]//IEEE. Proceedings of 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering. New York: IEEE, 2022: 663-668.
    [5]
    MORETTI M, TRIGLIA M, MAFFEI G. ARCHIMEDE—the first European diagnostic train for global monitoring of railway infrastructure[C]//IEEE. 2004 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2004: 522-526.
    [6]
    BOMBARDA D, VITETTA G M, FERRANTE G. Rail diagnostics based on ultrasonic guided waves: an overview[J]. Applied Sciences, 2021, 11(3): 1071. doi: 10.3390/app11031071
    [7]
    BALOUCHI F, BEVAN A, FORMSTON R. Development of railway track condition monitoring from multi-train in-service vehicles[J]. Vehicle System Dynamics, 2021, 59(9): 1397-1417. doi: 10.1080/00423114.2020.1755045
    [8]
    LEE J S, CHOI S, KIM S S, et al. Track condition monitoring by in-service trains: a comparison between axle-box and bogie accelerometers[J]. IET Conference Publications, 2011, DOI: 10.1049/cp.2011.0586.
    [9]
    PALESE J W, DIVENTURA S, HILL K, et al. Optimizing tamper efficiency through the integration of inertial based track geometry measurement[C]//ASME. Proceedings of the 2017 Joint Rail Conference. New York: ASME, 2017: 1-11.
    [10]
    HAIGERMOSER A, LUBER B, RAUH J, et al. Road and track irregularities: measurement, assessment and simulation[J]. Vehicle System Dynamics, 2015, 53(7): 878-957. doi: 10.1080/00423114.2015.1037312
    [11]
    KARIS T, BERG M, STICHEL S, et al. Correlation of track irregularities and vehicle responses based on measured data[J]. Vehicle System Dynamics, 2018, 56(6): 967-981. doi: 10.1080/00423114.2017.1403634
    [12]
    MERCIER S, MEIER-HIRMER C, ROUSSIGNOL M. Bivariate Gamma wear processes for track geometry modelling, with application to intervention scheduling[J]. Structure and Infrastructure Engineering, 2012, 8(4): 357-366. doi: 10.1080/15732479.2011.563090
    [13]
    MARTIN T P, ZAAZAA K E, WHITTEN B, et al. Using a multibody dynamic simulation code with neural network technology to predict railroad vehicle-track interaction performance in real time[C]//ASME. 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York: ASME, 2007: 1881-1891.
    [14]
    LOPRESTI J, MCHENRY M. Detection of concrete tie rail seat deterioration[R]. Washington DC: Federal Railroad Administration, 2019.
    [15]
    SADEGHI J, MOTIEYAN NAJAR M E, ZAKERI J A, et al. Development of railway ballast geometry index using automated measurement system[J]. Measurement, 2019, 138: 132-142. doi: 10.1016/j.measurement.2019.01.092
    [16]
    ALAHAKOON S, SUN Y Q, SPIRYAGIN M, et al. Rail flaw detection technologies for safer, reliable transportation: a review[J]. Journal of Dynamic Systems, Measurement, and Control, 2018, 140(2): 020801. doi: 10.1115/1.4037295
    [17]
    MIĆIĆ M, BRAJOVIĆ L, LAZAREVIĆ L, et al. Inspection of RCF rail defects—review of NDT methods[J]. Mechanical Systems and Signal Processing, 2023, 182: 109568. doi: 10.1016/j.ymssp.2022.109568
    [18]
    王雪梅, 倪文波, 王平. 高速铁路轨道无损探伤技术的研究现状和发展趋势[J]. 无损检测, 2013, 35(2): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201302005.htm

    WANG Xue-mei, NI Wen-bo, WANG Ping. Overview and future development of rails nondestructive inspection[J]. Nondestructive Testing, 2013, 35(2): 10-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201302005.htm
    [19]
    徐其瑞, 刘峰. 钢轨探伤车技术发展与应用[J]. 中国铁路, 2011(7): 44-47. doi: 10.19549/j.issn.1001-683x.2011.07.011

    XU Qi-rui, LIU Feng. Development and application of rail flaw detection car[J]. China Railway, 2011(7): 44-47. (in Chinese) doi: 10.19549/j.issn.1001-683x.2011.07.011
    [20]
    WU F P, LI Q H, LI S P, et al. Train rail defect classification detection and its parameters learning method[J]. Measurement, 2020, 151: 107246. doi: 10.1016/j.measurement.2019.107246
    [21]
    FUJINO Y, SIRINGORINGO D M. Recent research and development programs for infrastructures maintenance, renovation and management in Japan[J]. Structure and Infrastructure Engineering, 2020, 16(1): 3-25. doi: 10.1080/15732479.2019.1650077
    [22]
    YASUDA N, MISAKI N, SHIMADA Y, et al. Applicability of non-contact inspection using laser ablation-induced vibration in a reinforced concrete tunnel lining[J]. Tunnelling and Underground Space Technology, 2021, 113: 103977. doi: 10.1016/j.tust.2021.103977
    [23]
    王石磊, 高岩, 齐法琳, 等. 铁路运营隧道检测技术综述[J]. 交通运输工程学报, 2020, 20(5): 41-57. doi: 10.19818/j.cnki.1671-1637.2020.05.003

    WANG Shi-lei, GAO Yan, QI Fa-lin, et al. Review on inspection technology of railway operation tunnels[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 41-57. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.003
    [24]
    CAORSI S, CEVINI G, BURRO F, et al. An innovative on-board processor for the real-time GPR monitoring of railway substructure conditions[C]//IEEE. Proceedings of the 2007 4th International Workshop on Advanced Ground Penetrating Radar. New York: IEEE, 2007: 284-289.
    [25]
    AL-QADI I, XIE W, ROBERTS R. Optimization of antenna configuration in multiple-frequency ground penetrating radar system for railroad substructure assessment[J]. NDT & E International, 2010, 43(1): 20-28.
    [26]
    LI D Q, THOMPSON R, MARQUEZ P, et al. Development and implementation of a continuous vertical track-support testing technique[J]. Transportation Research Record: Journal of the Transportation Research Board, 2004, 1863(1): 68-73. doi: 10.3141/1863-09
    [27]
    LI M X D, BERGGREN E G. A study of the effect of global track stiffness and its variations on track performance: simulation and measurement[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2010, 224(5): 375-382. doi: 10.1243/09544097JRRT361
    [28]
    WANG P, WANG L, CHEN R, et al. Overview and outlook on railway track stiffness measurement[J]. Journal of Modern Transportation, 2016, 24(2): 89-102. doi: 10.1007/s40534-016-0104-8
    [29]
    BERGGREN E G, KAYNIA A M, DEHLBOM B. Identification of substructure properties of railway tracks by dynamic stiffness measurements and simulations[J]. Journal of Sound and Vibration, 2010, 329(19): 3999-4016. doi: 10.1016/j.jsv.2010.04.015
    [30]
    MIKRUT S, KOHUT P, PYKA K, et al. Mobile laser scanning systems for measuring the clearance gauge of railways: state of play, testing and outlook[J]. Sensors, 2016, 16(5): 683. doi: 10.3390/s16050683
    [31]
    SHIMIZU M, OIZUMI J, MATSUOKA R, et al. Development of a novel system to measure a clearance of a passenger platform[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, 41: 573-580.
    [32]
    YAMASHITA Y, IKEDA M. Advanced active control of contact force between pantograph and catenary for high-speed trains[J]. Quarterly Report of RTRI, 2012, 53(1): 28-33. doi: 10.2219/rtriqr.53.28
    [33]
    赵晓娜, 吴兴军, 徐根厚. 德国高速铁路接触网检测系统[J]. 中国铁路, 2008(9): 60-62. doi: 10.3969/j.issn.1001-683X.2008.09.016

    ZHAO Xiao-na, WU Xing-jun, XU Gen-hou. Catenary inspection system of German high-speed railway[J]. China Railway, 2008(9): 60-62. (in Chinese) doi: 10.3969/j.issn.1001-683X.2008.09.016
    [34]
    BRUNI S, BUCCA G, CARNEVALE M, et al. Pantograph-catenary interaction: recent achievements and future research challenges[J]. International Journal of Rail Transportation, 2018, 6(2): 57-82. doi: 10.1080/23248378.2017.1400156
    [35]
    LEE J H, PARK T W, OH H K, et al. Analysis of dynamic interaction between catenary and pantograph with experimental verification and performance evaluation in new high-speed line[J]. Vehicle System Dynamics, 2015, 53(8): 1117-1134. doi: 10.1080/00423114.2015.1025797
    [36]
    KIM J Y, KIM J P, KIM W S. Structure of integrated adaptive catenary inspection system for improved safety[J]. Journal of the Institute of Electronics and Information Engineers, 2015, 52(9): 147-152. doi: 10.5573/ieie.2015.52.9.147
    [37]
    牛道安. 铁路基础设施全寿命检测技术与发展[J]. 铁道建筑, 2020, 60(4): 5-8, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202004003.htm

    NIU Dao-an. Technology and development of railway infrastructure lifetime inspection[J]. Railway Engineering, 2020, 60(4): 5-8, 16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202004003.htm
    [38]
    侯智雄, 王昊, 戴鹏, 等. 铁路基础设施搭载式检测系统的研发[J]. 铁道建筑, 2020, 60(10): 142-145. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202010031.htm

    HOU Zhi-xiong, WANG Hao, DAI Peng, et al. Research and development of on-board inspection system for railway infrastructure[J]. Railway Engineering, 2020, 60(10): 142-145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202010031.htm
    [39]
    TSUNASHIMA H, NAGANUMA Y, MATSUMOTO A, et al. Japanese railway condition monitoring of tracks using in-service vehicle[J]. IET Conference Publications, DOI: 10.1049/cp.2011.0587.
    [40]
    NIELSEN J, BERGGREN E, LöLGEN T, et al. Overview of methods for measurement of track irregularities[R]. Gothenburg: Chalmers University of Technology, 2013.
    [41]
    王保国, 张可新, 杨桉, 等. 高速铁路基础设施维护管理及综合维修体系研究[J]. 中国铁路, 2019(3): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201903004.htm

    WANG Bao-guo, ZHANG Ke-xin, YANG An, et al. High speed railway infrastructure maintenance management and comprehensive maintenance system[J]. China Railway, 2019(3): 10-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201903004.htm
    [42]
    康熊, 王卫东, 李海浪. 高速综合检测列车关键技术研究[J]. 中国铁路, 2012(10): 3-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201210002.htm

    KANG Xiong, WANG Wei-dong, LI Hai-lang. Research on key technologies of high-speed comprehensive inspection train[J]. China Railway, 2012(10): 3-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201210002.htm
    [43]
    李海浪, 王卫东, 康洪军, 等. CRH380B-002高速综合检测列车总体架构设计[J]. 铁道建筑, 2014, 54(2): 109-112. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201402037.htm

    LI Hai-lang, WANG Wei-dong, KANG Hong-jun, et al. Research on overall architecture of CRH380B-002 high-speed comprehensive inspection train[J]. Railway Engineering, 2014, 54(2): 109-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201402037.htm
    [44]
    王源, 徐金辉, 陈嵘, 等. 基于中点弦测法的轨道不平顺精确值数学模型研究[J]. 铁道建筑, 2015, 55(5): 139-143. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201505039.htm

    WANG Yuan, XU Jin-hui, CHEN Rong, et al. Research on mathematical model of accurate value of track irregularity based on midpoint chord measurement method[J]. Railway Engineering, 2015, 55(5): 139-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201505039.htm
    [45]
    魏世斌, 李颖, 赵延峰, 等. GJ-6型轨道检测系统的设计与研制[J]. 铁道建筑, 2012, 52(2): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201202030.htm

    WEI Shi-bin, LI Ying, ZHAO Yan-feng, et al. Design and development of GJ-6 track inspection system[J]. Railway Engineering, 2012, 52(2): 97-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201202030.htm
    [46]
    宋浩然, 田新宇, 戴鹏, 等. 高速铁路综合巡检车研制[J]. 中国铁路, 2021(6): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202106005.htm

    SONG Hao-ran, TIAN Xin-yu, DAI Peng, et al. Development of comprehensive patrol inspection vehicle of high speed railway[J]. China Railway, 2021(6): 28-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202106005.htm
    [47]
    徐其瑞, 石永生, 许贵阳, 等. GTC-80型钢轨探伤车及其运用[J]. 中国铁路, 2013(11): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201311014.htm

    XU Qi-rui, SHI Yong-sheng, XU Gui-yang, et al. Development and utilization of GTC-80 rail flaw detection car[J]. China Railway, 2013(11): 55-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201311014.htm
    [48]
    潘振, 金花, 柴雪松, 等. 移动式线路动态加载试验车轨道刚度检测技术[J]. 铁道建筑, 2015, 55(6): 143-146. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201506039.htm

    PAN Zhen, JIN Hua, CHAI Xue-song, et al. Track stiffness inspection technology based on moveable track loading vehicle[J]. Railway Engineering, 2015, 55(6): 143-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201506039.htm
    [49]
    潘振. 基于加载车的普速铁路轨道刚度管理标准研究[J]. 铁道建筑, 2021, 61(3): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202103029.htm

    PAN Zhen. Research on track stiffness management standards of ordinary speed railway based on track loading vehicle[J]. Railway Engineering, 2021, 61(3): 128-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202103029.htm
    [50]
    张润宝, 杨志鹏. 接触网运行状态检测监测系统研究与实践[J]. 中国铁路, 2019(9): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201909013.htm

    ZHANG Run-bao, YANG Zhi-peng. Research and practice of operation state inspection and monitoring system of overhead contact line system[J]. China Railway, 2019(9): 64-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201909013.htm
    [51]
    盛良, 张克永, 张文轩, 等. 推动4C装置图像智能识别技术持续发展的思考[J]. 中国铁路, 2020(10): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202010016.htm

    SHENG Liang, ZHANG Ke-yong, ZHANG Wen-xuan, et al. Thoughts on promoting the sustainable development of intelligent image identification technology of 4C device[J]. China Railway, 2020(10): 84-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202010016.htm
    [52]
    牛道安, 柯在田, 刘维桢, 等. 高速铁路基础设施检测监测体系框架研究[J]. 中国铁路, 2020(10): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202010002.htm

    NIU Dao-an, KE Zai-tian, LIU Wei-zhen, et al. Research on the inspection and monitoring system framework of high speed railway infrastructure[J]. China Railway, 2020(10): 9-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202010002.htm
    [53]
    刁巍巍, 岑敏仪, 江来伟, 等. 轨道检查仪异常数据发现与定位[J]. 测绘与空间地理信息, 2019, 42(7): 232-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201907071.htm

    DIAO Wei-wei, CEN Min-yi, JIANG Lai-wei, et al. Abnormal data discovery and positioning of track geometry inspection instrument[J]. Geomatics and Spatial Information Technology, 2019, 42(7): 232-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201907071.htm
    [54]
    贺文, 王俊平, 张敏, 等. 车载接触网运行状态检测装置系统设计及应用[J]. 机车电传动, 2020(1): 144-148. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202001036.htm

    HE Wen, WANG Jun-ping, ZHANG Min, et al. System design and application of on-board overhead catenary monitoring device[J]. Electric Drive for Locomotives, 2020(1): 144-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202001036.htm
    [55]
    孙晨旭, 任小东, 李斌. 铁路轨旁设备设施视频检测识别系统[J]. 中国铁路, 2018(11): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201811021.htm

    SUN Chen-xu, REN Xiao-dong, LI Bin. Video detection and identification system for railway trackside equipment and facilities[J]. China Railway, 2018(11): 99-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201811021.htm
    [56]
    阚峰. 列控设备动态监测系统运用案例分析[J]. 上海铁道科技, 2017(1): 146-148. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKJ201701062.htm

    KAN Feng. Analysis on application cases of dynamic monitoring system for train control equipment[J]. Shanghai Railway Science and Technology, 2017(1): 146-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDKJ201701062.htm
    [57]
    申瑞源. 动车组司机操控信息分析系统(EOAS)设计与实现[J]. 中国铁路, 2016(8): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201608001.htm

    SHEN Rui-yuan. Design and implementation of EMU engineer operation analysis system(EOAS)[J]. China Railway, 2016(8): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201608001.htm
    [58]
    孙启民. 沪宁高速铁路GSM-R网络接口监测综合分析子系统设计与实现[J]. 铁路技术创新, 2011(增): 8-11.

    SUN Qi-min. Design and implementation of GSM-R network interface monitoring system on Shanghai-Nanjing High Speed Railway[J]. Railway Technical Innovation, 2011(S): 8-11. (in Chinese)
    [59]
    冯栋, 赵林海. 基于机车信号远程监测系统的分路电阻在线估算方法[J]. 铁道学报, 2017, 39(4): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201704009.htm

    FENG Dong, ZHAO Lin-hai. Online estimation method of shunt resistance based on cab-signal remote monitoring system[J]. Journal of the China Railway Society, 2017, 39(4): 62-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201704009.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1148) PDF downloads(221) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return