Volume 23 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
WANG Chun-sheng, LYU Xing-hao, LI Xi, DUAN Lan, YAO Bo. Experiments on factors affecting fatigue performance of bridge cable steel wires[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 70-79. doi: 10.19818/j.cnki.1671-1637.2023.01.005
Citation: WANG Chun-sheng, LYU Xing-hao, LI Xi, DUAN Lan, YAO Bo. Experiments on factors affecting fatigue performance of bridge cable steel wires[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 70-79. doi: 10.19818/j.cnki.1671-1637.2023.01.005

Experiments on factors affecting fatigue performance of bridge cable steel wires

doi: 10.19818/j.cnki.1671-1637.2023.01.005
Funds:

National Key Research and Development Program of China 2015CB057703

Innovation Capability Support Program of Shaanxi Province 2019TD-022

More Information
  • Author Bio:

    WANG Chun-sheng(1972-), male, professor, PhD, wcs2000wcs@163.com

  • Received Date: 2022-08-13
    Available Online: 2023-03-08
  • Publish Date: 2023-02-25
  • To study the fatigue and corrosion fatigue performance of bridge cable steel wires, fatigue and corrosion fatigue experiments of cable steel wires were conducted by using new steel wires of different strength grades, cable steel wires of a cable-stayed bridge in service for seven years, and steel wires treated with artificially accelerated corrosion. According to the macroscopic morphology characteristics of typical fatigue fractures, the fatigue fracture mechanism of cable steel wires was explored. The Weibull distribution function was adopted to fit the stress-fatigue life curves of cable steel wires, and differences in the stress-fatigue life curves of different steel wires were compared. The influences of four key factors including the strength grade, stress ratio, corrosion damage, and corrosion-fatigue damage on the fatigue resistance of cable steel wires were revealed, and the corresponding fatigue strength curves were suggested. Test results show that the uncorroded steel wires have excellent fatigue resistance. With the increase in the strength grade, the fatigue strength of cable steel wires increases significantly, and the corresponding fatigue limit improves gradually. The fatigue strength of cable steel wires decreases significantly as the stress ratio improves. Both the corrosion damage and corrosion-fatigue damage significantly reduce the fatigue strength of cable steel wires, and the remaining fatigue life of cable steel wires is greatly affected by the corrosion-fatigue damage than the single corrosion damage. The fatigue cracks of the new steel wires derive from the surface scratch or uneven places of the material. For the steel wires with corrosion damage and corrosion-fatigue damage, the stress concentration is significantly found at the corrosion pit, the fatigue cracks are originated from the corrosion pit on the steel wire surface, and the probabilities of multi-source crack initiation and irregular crack propagation increase. The influences of strength grade, stress ratio, corrosion damage, and corrosion-fatigue damage of steel wires should be considered comprehensively in the bridge cable fatigue resistance design and safety assessment. The steel wire widely used in bridge cables in China is used in the test, and the fatigue strength obtained can be referenced by the fatigue resistance design and life prediction of bridge cables.

     

  • loading
  • [1]
    ZHOU Yu-fen, CHEN Su-ren. Investigation of the live-load effects on long-span bridges under traffic flows[J]. Journal of Bridge Engineering, 2018, 23(5): 04018021. doi: 10.1061/(ASCE)BE.1943-5592.0001214
    [2]
    毛伟琦, 胡雄伟. 中国大跨度桥梁最新进展与展望[J]. 桥梁建设, 2020, 50(1): 13-19. doi: 10.3969/j.issn.1003-4722.2020.01.003

    MAO Wei-qi, HU Xiong-wei. Latest developments and prospects for long-span bridges in China[J]. Bridge Construction, 2020, 50(1): 13-19. (in Chinese) doi: 10.3969/j.issn.1003-4722.2020.01.003
    [3]
    WATSON S C, STAFFORD D G. Cables in trouble[J]. Civil Engineering, 1988, 58 (4): 38-41.
    [4]
    宋神友, 薛花娟, 陈焕勇, 等. 伶仃洋大桥锌-铝-稀土合金镀层钢丝腐蚀-疲劳耦合试验研究[J]. 桥梁建设, 2022, 52(2): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202202004.htm

    SONG Shen-you, XUE Hua-juan, CHEN Huan-yong, et al. Experimental research on corrosion-fatigue coupling of Zn-Al-rare earth alloy coated steel wires of Lingdingyang Bridge[J]. Bridge Construction, 2022, 52(2): 24-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202202004.htm
    [5]
    HAMILTON Ⅲ H R, BREEN J E, FRANK K H. Investigation of corrosion protection systems for bridge stay cables[D]. Austin: University of Texas, 1995.
    [6]
    王力力, 易伟建. 斜拉索的腐蚀案例与分析[J]. 中南公路工程, 2007(1): 93-98. doi: 10.3969/j.issn.1674-0610.2007.01.023

    WANG Li-li, YI Wei-jian. Cases analysis on cable corrosion of cable-stayed bridges[J]. Central South Highway Engineering, 2007(1): 93-98. (in Chinese) doi: 10.3969/j.issn.1674-0610.2007.01.023
    [7]
    MORGADO T L M, SOUSA E BRITO A. A failure analysis study of a prestressed steel cable of a suspension bridge[J]. Case Studies in Construction Materials, 2015, 3: 40-47. doi: 10.1016/j.cscm.2015.04.001
    [8]
    NAKAMURA S, SUZUMURA K. Experimental study on fatigue strength of corroded bridge wires[J]. Journal of Bridge Engineering, 2013, 18(3): 200-209. doi: 10.1061/(ASCE)BE.1943-5592.0000366
    [9]
    JIANG J H, MA A B, WENG W F, et al. Corrosion fatigue performance of pre-split steel wires for high strength bridge cables[J]. Fatigue and Fracture of Engineering Materials and Structures, 2009, 32(9): 769-779. doi: 10.1111/j.1460-2695.2009.01384.x
    [10]
    TARUI T, MARUYAMA N, EGUCHI T, et al. High strength galvanized steel wire for bridge cables[J]. Structural Engineering International, 2002, 12(3): 209-213. doi: 10.2749/101686602777965342
    [11]
    TAKENA K, MIKI C, SHIMOKAWA H, et al. Fatigue resistance of large-diameter cable for cable-stayed bridges[J]. Journal of Structural Engineering, 1992, 118(3): 701-715. doi: 10.1061/(ASCE)0733-9445(1992)118:3(701)
    [12]
    程育仁, 王家石, 李鸿发, 等. Φ5 mm碳素钢丝的疲劳性能[J]. 铁道学报, 1989, 11(1): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB198901008.htm

    CHENG Yu-ren, WANG Jia-shi, LI Hong-fa, et al. Fatigue behavior of Φ5 mm carbon steel wire[J]. Journal of the China Railway Society, 1989, 11(1): 74-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB198901008.htm
    [13]
    李先立, 宋显辉, 刘禹钦. 高强镀锌钢丝疲劳可靠性研究[J]. 土木工程学报, 1995, 28(2): 36-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199502004.htm

    LI Xian-li, SONG Xian-hui, LIU Yu-qin. Investigation on fatigue reliability of high strength galvanized steel wires[J]. China Civil Engineering Journal, 1995, 28(2): 36-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199502004.htm
    [14]
    徐俊. 拉索损伤演化机理与剩余使用寿命评估[D]. 上海: 同济大学, 2006.

    XU Jun. Damage evolution mechanism and remained service lives evaluation of stayed cables[D]. Shanghai: Tongji University, 2006. (in Chinese)
    [15]
    兰成明. 平行钢丝斜拉索全寿命安全评定方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    LAN Cheng-ming. Study on life-cycle safety assessment methods for parallel wire stay cable[D]. Harbin: Harbin Institute of Technology, 2009. (in Chinese)
    [16]
    吴冲, 蒋超, 姜旭. 预腐蚀桥梁缆索高强钢丝疲劳试验[J]. 同济大学学报(自然科学版), 2018, 46(12): 1622-1627. doi: 10.11908/j.issn.0253-374x.2018.12.002

    WU Chong, JIANG Chao, JIANG Xu. Experiment research on fatigue performance of pre-corroded high-strength bridge wires[J]. Journal of Tongji University (Natural Science), 2018, 46(12): 1622-1627. (in Chinese) doi: 10.11908/j.issn.0253-374x.2018.12.002
    [17]
    张家男. 桥梁拉吊索用高强镀锌钢丝锈蚀与疲劳性能研究[D]. 大连: 大连理工大学, 2016.

    ZHANG Jia-nan. Study on corrosion and fatigue properties of high-strength galvanized steel wire used for cable of bridge[D]. Dalian: Dalian University of Technology, 2016. (in Chinese)
    [18]
    李晓章, 谢旭, 潘骁宇, 等. 拱桥吊杆锈蚀高强钢丝疲劳性能试验研究[J]. 土木工程学报, 2015, 48(11): 68-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201511010.htm

    LI Xiao-zhang, XIE Xu, PAN Xiao-yu, et al. Experimental study on fatigue performance of corroded high tensile steel wires of arch bridge hangers[J]. China Civil Engineering Journal, 2015, 48 (11): 68-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201511010.htm
    [19]
    MIAO Chang-qing, LI Rou, YU Jie. Effects of characteristic parameters of corrosion pits on the fatigue life of the steel wires[J]. Journal of Constructional Steel Research, 2020, 168: 105879. doi: 10.1016/j.jcsr.2019.105879
    [20]
    MA Ya-fei, WANG Guo-dong, GUO Zhong-zhao, et al. Critical region method-based fatigue life prediction of notched steel wires of long-span bridges[J]. Construction and Building Materials, 2019, 225: 601-610. doi: 10.1016/j.conbuildmat.2019.07.157
    [21]
    郑祥隆, 谢旭, 李晓章, 等. 锈蚀钢丝疲劳断口分析与寿命预测[J]. 中国公路学报, 2017, 30(4): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201704010.htm

    ZHENG Xiang-long, XIE Xu, LI Xiao-zhang, et al. Fatigue fracture surface analysis and fatigue life estimation of corroded steel wires[J]. China Journal of Highway and Transport, 2017, 30(4): 79-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201704010.htm
    [22]
    CHEN Chao, JIE Zhi-yu, WANG Kai-nan. Fatigue life evaluation of high-strength steel wires with multiple corrosion pits based on the TCD[J]. Journal of Constructional Steel Research, 2021, 186: 106913.
    [23]
    JIE Z, SUSMEL L. High-strength steel wires containing corrosion pits: stress analysis and critical distance based fatigue life estimation[J]. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43(8): 1611-1629.
    [24]
    JUNGWIRTH D, BALÁZS G L, BOITEL P. Acceptance of stay cable systems using prestressing steels[R]. Lausanne: Fédération Internationale du Béton, 2005.
    [25]
    李鸥, 侍刚, 王波, 等. 运营期桥梁斜拉索的技术状况检测[J]. 世界桥梁, 2017, 45(4): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201704016.htm

    LI Ou, SHI Gang, WANG Bo, et al. Inspection of technical condition of bridge stay cables in operation period[J]. World Bridges, 2017, 45(4): 79-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201704016.htm
    [26]
    李晓章. 拱桥服役吊杆的力学性能退化及其索力识别研究[D]. 杭州: 浙江大学, 2015.

    LI Xiao-zhang. Research on mechanical performance degradation and tension force identification of arch bridge hander[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
    [27]
    刘明虎, 薛花娟. 港珠澳大桥超高强度平行钢丝斜拉索设计与技术研究[J]. 桥梁建设, 2014, 44(5): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201405018.htm

    LIU Ming-hu, XUE Hua-juan. Design and technological study of super high strength parallel steel wire stay cables for Hong Kong-Zhuhai-Macao Bridge[J]. Bridge Construction, 2014, 44(5): 88-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201405018.htm
    [28]
    闫志刚, 薛花娟. 沪通长江大桥直径7 mm 2 000 MPa级钢丝试验研究[J]. 铁道学报, 2018, 4(7): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201807019.htm

    YAN Zhi-gang, XUE Hua-juan. Test research on 2 000 MPa 7 mm diameter steel wire for Hutong Changjiang River Bridge[J]. Journal of the China Railway Society, 2018, 4(7): 115-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201807019.htm
    [29]
    钟群鹏, 赵子华, 张峥. 断口学的发展及微观断裂机理研究[J]. 机械强度, 2005, 27(3): 358-370. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD200503017.htm

    ZHONG Qun-peng, ZHAO Zi-hua, ZHANG Zheng. Development of fractography and research of fracture micromechanism[J]. Journal of Mechanical Strength, 2005, 27(3): 358-370. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD200503017.htm
    [30]
    兰成明, 徐阳, 任登路, 等. 平行钢丝斜拉索疲劳性能评定Ⅰ: 钢丝疲劳寿命模型[J]. 土木工程学报, 2017, 50(6): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201707008.htm

    LAN Cheng-ming, XU Yang, REN Deng-lu, et al. Fatigue property assessment of parallel wire stay cable Ⅰ: fatigue life model for wire[J]. China Civil Engineering Journal, 2017, 50(6): 62-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201707008.htm
    [31]
    傅惠民, 高镇同. 确定威布尔分布三参数的相关系数优化法[J]. 航空学报, 1990, 11(7): 323-327. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB199007002.htm

    FU Hui-min, GAO Zhen-tong. An optimization method of correlation coefficient for determining a three-parameter Weibull distribution[J]. Acta Aeronautica et Astronautica Sinica, 1990, 11(7): 323-327. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB199007002.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (512) PDF downloads(118) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return