Volume 23 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
ZHENG Mu-lian, CHEN Wang, WANG Hai-yang. Evaluation of texture and noise of low-noise micro-surface based on image processing technology[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 80-92. doi: 10.19818/j.cnki.1671-1637.2023.01.006
Citation: ZHENG Mu-lian, CHEN Wang, WANG Hai-yang. Evaluation of texture and noise of low-noise micro-surface based on image processing technology[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 80-92. doi: 10.19818/j.cnki.1671-1637.2023.01.006

Evaluation of texture and noise of low-noise micro-surface based on image processing technology

doi: 10.19818/j.cnki.1671-1637.2023.01.006
Funds:

National Natural Science Foundation of China 52078051

Fundamental Research Funds for the Central Universities 310821163502

Transportation Science and Technology Project for Shandong Province Lujiaokeji [2017] 28

Foundation of China Scholarship Council 202106560039

More Information
  • Author Bio:

    ZHENG Mu-lian (1977-), female, professor, PhD, zhengml@chd.edu.cn

  • Received Date: 2022-09-23
    Available Online: 2023-03-08
  • Publish Date: 2023-02-25
  • The mechanism of noise generation at pavement micro-surface was analyzed, five low-noise micro-surfaces were designed and compared with common micro-surfaces, and the texture depths and noises of different micro-surfaces were tested. A three-dimensional texture model of micro-surfaces was constructed based on the digital image processing technology, and the relevant texture parameters were excavated to evaluate the textures and noise characteristics of different micro-surfaces. Two pavement surface texture parameters, namely the probability of convex peak distribution and the proportion of convex peak area, were proposed, and the correlations between the parameters and indoor noise were analyzed. Analysis results show that compared with the micro-surface with common medium gradation, the micro-surface with low-noise gradation can reduce the noise by 3.1 dB approximately. Rubber powder in micro-surface can reduce the surface structure and pendulum value by improving the elasticity and sound absorption characteristics of micro-surface, and the noise can be reduced by 2.0 and 6.3 dB by mixing into the medium gradation and low-noise gradation, respectively. Water-based epoxy resin in micro-surface can reduce the macroscopic texture of pavement by improving the workability during construction, and the noise can be reduced by mixing into the medium gradation. The noise reduction effect is similar to that of micro-surface with low-noise gradation. The average pixel difference calculated based on the three-dimensional texture model has a significant linear relationship with the actual texture depth of micro-surface, with a correlation coefficient of 0.94. The distributions of convex peak heights of micro-surfaces with the medium gradation and low-noise gradation exhibit a linear function and a normal function, respectively, and the adjustment of the gradation can significantly reduce the distribution of the lower convex peak height. Additionally, an increase in the number of low convex peaks can enrich the texture of micro-surface, and thus the probability of convex peak distribution can quantify the texture distribution characteristics of micro-surface. The convex peak height of 0.25 mm is the inflection point of the probability of convex peak height distribution curve, and the percentage of the area with a convex peak height greater than 0.25 mm has a significant linear correlation with the noise on micro-surface compared with the full range of convex peak height, and the correlation coefficient is 0.98.

     

  • loading
  • [1]
    黎侃, 李新伟, 王端宜. 聚丙烯单丝纤维微表处路用性能研究[J]. 公路交通科技, 2013, 30(8): 17-22. doi: 10.3969/j.issn.1002-0268.2013.08.004

    LI Kan, LI Xin-wei, WANG Duan-yi. Study on road performances of micro-surfacing mixed with polypropylene filament fiber[J]. Journal of Highway and Transportation Research and Development, 2013, 30(8): 17-22. (in Chinese) doi: 10.3969/j.issn.1002-0268.2013.08.004
    [2]
    徐剑, 秦永春, 黄颂昌. 微表处混合料路用性能研究[J]. 公路交通科技, 2002, 19(4): 39-42. doi: 10.3969/j.issn.1002-0268.2002.04.012

    XU Jian, QIN Yong-chun, HUANG Song-chang. Research on the performance of micro-surfacing mixture[J]. Journal of Highway and Transportation Research and Development, 2002, 19(4): 39-42. (in Chinese) doi: 10.3969/j.issn.1002-0268.2002.04.012
    [3]
    KOGBARA R B, MASAD E A, KASSEM E, et al. A state-of-the-art review of parameters influencing measurement and modeling of skid resistance of asphalt pavements[J]. Construction and Building Materials, 2016, 114: 602-617. doi: 10.1016/j.conbuildmat.2016.04.002
    [4]
    孙晓立, 张肖宁, 蔡旭. 不同类型微表处噪声特性的室内试验[J]. 公路交通科技, 2012, 29(2): 18-22, 39. doi: 10.3969/j.issn.1002-0268.2012.02.004

    SUN Xiao-li, ZHANG Xiao-ning, CAI Xu. Indoor experiment of noise characteristics of different types of micro-surfacing[J]. Journal of Highway and Transportation Research and Development, 2012, 29(2): 18-22, 39. (in Chinese) doi: 10.3969/j.issn.1002-0268.2012.02.004
    [5]
    LI Zhen, LIU Hao, DONG Yu-ming, et al. Design and text method of indoor noise for micro-surfacing mixture[C]//ASCE. Transportation Research Congress 2016: Innovations in Transportation Research Infrastructure. Reston: ASCE, 2018: 242-250.
    [6]
    CAO Li-ping, LIU Sheng-qiang, HOU Xiang-shen, et al. Low Noise Gradation Design for Micro-Surfacing Mix based on Indoor Noise Test Method[M]. Boca Raton: CRC Press, 2016.
    [7]
    凌天清, 李耀楠, 董强, 等. 橡胶颗粒对微表处性能的影响及其降噪效果[J]. 交通运输工程学报, 2011, 11(5): 1-5. doi: 10.19818/j.cnki.1671-1637.2011.05.001

    LING Tian-qing, LI Yao-nan, DONG Qiang, et al. Influence of rubber particles on micro-surfacing performance and its noise-reduction effect[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 1-5. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2011.05.001
    [8]
    NOWOŚWIAT A, SOROCIAK W, ŹUCHOWSKI R. The impact of the application of thin emulsion mat microsurfacing on the level of noise in the environment[J]. Construction and Building Materials, 2020, 263: 120626. doi: 10.1016/j.conbuildmat.2020.120626
    [9]
    ZHAO Mei-ling, ZHAO Zhi-jie. Study on noise reduction mechanism and surface performance of crumb rubber micro-surfacing material[J]. Key Engineering Materials, 2014, 599: 257-260. doi: 10.4028/www.scientific.net/KEM.599.257
    [10]
    郑南翔, 胡魁, 刘伟亮, 等. 低噪声微表处吸声特性的试验研究[J]. 武汉理工大学学报, 2012, 34(12): 57-60. doi: 10.3963/j.issn.1671-4431.2012.12.012

    ZHENG Nan-xiang, HU Kui, LIU Wei-liang, et al. Indoor experiment research of low-noise micro-surfacing sound-absorption characterization[J]. Journal of Wuhan University of Technology, 2012, 34(12): 57-60. (in Chinese) doi: 10.3963/j.issn.1671-4431.2012.12.012
    [11]
    陈德. 沥青混合料表面构造图像评价方法及抗滑降噪性能预测研究[D]. 西安: 长安大学, 2015.

    CHEN De. Study on image-based texture analysis method and prediction of skid-resistance & tire/pavement noise reduction of HMA[D]. Xi'an: Chang'an University, 2015. (in Chinese)
    [12]
    WEI Ding-bang, LI Bo, ZHANG Zheng-wei, et al. Influence of surface texture characteristics on the noise in grooving concrete pavement[J]. Applied Sciences-Basel, 2018, 8(11): 2141. doi: 10.3390/app8112141
    [13]
    MILJKOVIĆ M, RADENBERG M, GOTTAUT C. Characterization of noise-reducing capacity of pavement by means of surface texture parameters[J]. Journal of Materials in Civil Engineering, 2014, 26(2): 240-249. doi: 10.1061/(ASCE)MT.1943-5533.0000821
    [14]
    LIAO Gong-yun, SAKHAEIFAR M S, HEITZMAN M, et al. The effects of pavement surface characteristics on tire/pavement noise[J]. Applied Acoustics, 2014, 76: 14-23. doi: 10.1016/j.apacoust.2013.07.012
    [15]
    MILLER T, SWIERTZ D, TASHMAN L, et al. Characterization of asphalt pavement surface texture[J]. Transportation Research Record, 2012, 2295: 19-26. doi: 10.3141/2295-03
    [16]
    ASI I M. Evaluating skid resistance of different asphalt concrete mixes[J]. Building and Environment, 2007, 42(1): 325-329. doi: 10.1016/j.buildenv.2005.08.020
    [17]
    FWA T F. Skid resistance determination for pavement management and wet-weather road safety[J]. International Journal of Transportation Science and Technology, 2017, 6(3): 217-227. doi: 10.1016/j.ijtst.2017.08.001
    [18]
    GUO Fu-cheng, PEI Jian-zhong, ZHANG Jiu-peng, et al. Study on the skid resistance of asphalt pavement: a state-of-the-art review and future prospective[J]. Construction and Building Materials, 2021, 303: 124411. doi: 10.1016/j.conbuildmat.2021.124411
    [19]
    WEST R, TIMM D, WILLIS J R, et al. Phase Ⅳ NCAT pavement test track findings: draft report[R]. Auburn: Auburn University, 2012.
    [20]
    李志栋, 黄晓明, 陈广秀, 等. 微表处高噪声形成机理及其多支点降噪模型[J]. 公路交通科技, 2012, 29(1): 1-10. doi: 10.3969/j.issn.1002-0268.2012.01.001

    LI Zhi-dong, HUANG Xiao-ming, CHEN Guang-xiu, et al. Mechanism of high noise at micro-surfacing and multi-support denoising model[J]. Journal of Highway and Transportation Research and Development, 2012, 29(1): 1-10. (in Chinese) doi: 10.3969/j.issn.1002-0268.2012.01.001
    [21]
    刘玉恒. 低噪声微表处关键技术研究[D]. 南京: 东南大学, 2016.

    LIU Yu-heng. Research of key technology of low-noise micro-surface[D]. Nanjing: Southeast University, 2016. (in Chinese)
    [22]
    魏伟. 降噪微表处路面性能及其变化规律的研究[D]. 北京: 北京建筑大学, 2015.

    WEI Wei. Study on performances and change laws of the noise reduction micro-surfacing pavement[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2015. (in Chinese)
    [23]
    郭峰伟, 陈小雪. 纤维微表处应用技术研究[J]. 石油沥青, 2007, 21(3): 48-50. doi: 10.3969/j.issn.1006-7450.2007.03.013

    GUO Feng-wei, CHEN Xiao-xue. Research of fiber micro-surfacing application technology[J]. Petroleum Asphalt, 2007, 21(3): 48-50. (in Chinese) doi: 10.3969/j.issn.1006-7450.2007.03.013
    [24]
    DENEUVILLERS C. Design of microsurfacings: methodology and applications[J]. European Roads Review, 2004, 2: 13-19.
    [25]
    CHEN De, ROOHI SEFIDMAZGI N, BAHIA H. Exploring the feasibility of evaluating asphalt pavement surface macro-texture using image-based texture analysis method[J]. Road Materials and Pavement Design, 2015, 16(2): 405-420. doi: 10.1080/14680629.2015.1016547
    [26]
    EL GENDY A, SHALABY A, SALEH M, et al. Stereo-vision applications to reconstruct the 3D texture of pavement surface[J]. International Journal of Pavement Engineering, 2011, 12(3): 263-273. doi: 10.1080/10298436.2010.546858
    [27]
    XIAO Yue, WANG Feng, CUI Pei-de, et al. Evaluation of fine aggregate morphology by image method and its effect on skid-resistance of micro-surfacing[J]. Materials, 2018, 11(6): 920. doi: 10.3390/ma11060920
    [28]
    BENNERT T, HANSON D, MAHER A, et al. Influence of pavement surface type on tire/pavement generated noise[J]. Journal of Testing and Evaluation, 2005, 33(2): 94-100.
    [29]
    HAMET J F. Tire/road noise: time domain Green's function for the orthotropic plate model[J]. Acta Acustica United with Acustica, 2001, 87(4): 470-474.
    [30]
    彭彬, 黄晓明. 微表处路面噪音调查与研究[J]. 中外公路, 2008, 28(4): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200804021.htm

    PENG Bin, HUANG Xiao-ming. Investigation and research on pavement noise at micro-surfacing[J]. Journal of China and Foreign Highway, 2008, 28(4): 66-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200804021.htm
    [31]
    吕镇锋, 李波, 张正伟, 等. 刻槽混凝土路面表面纹理及其噪声的相关性统计分析[J]. 公路交通科技, 2015, 32(11): 14-19, 26. doi: 10.3969/j.issn.1002-0268.2015.11.003

    LYU Zhen-feng, LI Bo, ZHANG Zheng-wei, et al. Statistical analysis of correlation between surface texture and noise for grooved concrete pavement[J]. Journal of Highway and Transportation Research and Development, 2015, 32(11): 14-19, 26. (in Chinese) doi: 10.3969/j.issn.1002-0268.2015.11.003
    [32]
    LIU Qing-fan, SHALABY A. Relating concrete pavement noise and friction to three-dimensional texture parameters[J]. International Journal of Pavement Engineering, 2017, 18(5): 450-458. doi: 10.1080/10298436.2015.1095897
    [33]
    CHEN Zhang, LIU Li-yuan, XU Ting-yi. Relationship between asphalt pavement surface characteristics and road noise[C]//ASCE. 16th COTA International Conference of Transportation Professionals (CICTP): Green and Multimodal Transportation and Logistics. Reston: ASCE, 2016: 580-595.
    [34]
    CHEN De, LING Cheng, WANG Ting-ting, et al. Prediction of tire-pavement noise of porous asphalt mixture based on mixture surface texture level and distributions[J]. Construction and Building Materials, 2018, 173: 801-810. doi: 10.1016/j.conbuildmat.2018.04.062
    [35]
    MOON H Y, HA S W. Performance evaluation of exposed aggregate texturing in concrete pavement based on in-situ noise measurements[J]. Journal of the Korea Concrete Institute, 2003, 15(3): 504-511. doi: 10.4334/JKCI.2003.15.3.504
    [36]
    HONG S J, PARK S W, LEE S W. The effect of texture wavelength on the tire-pavement noise in asphalt concrete pavement[J]. Korean Society of Road Engineers, 2015, 17(1): 1-6.
    [37]
    VIEIRA T, SANDBERG U, ERLINGSSON S. Acoustical performance of winter tyres on in-service road surfaces[J]. Applied Acoustics, 2019, 153: 30-47. doi: 10.1016/j.apacoust.2019.03.025
    [38]
    LING Sen-lin, YU Fan, SUN Da-quan, et al. A comprehensive review of tire-pavement noise: generation mechanism, measurement methods, and quiet asphalt pavement[J]. Journal of Cleaner Production, 2021, 287: 125056. doi: 10.1016/j.jclepro.2020.125056
    [39]
    WINROTH J, KROPP W, HOEVER C, et al. Investigating generation mechanisms of tyre/road noise by speed exponent analysis[J]. Applied Acoustics, 2017, 115: 101-108. doi: 10.1016/j.apacoust.2016.08.027
    [40]
    肖飞鹏, 王涛, 王嘉宇, 等. 橡胶沥青路面降噪技术原理与研究进展[J]. 中国公路学报, 2019, 32(4): 73-91. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201904006.htm

    XIAO Fei-peng, WANG Tao, WANG Jia-yu, et al. Mechanism and research development of noise reduction technology of rubberized asphalt pavement[J]. China Journal of Highway and Transport, 2019, 32(4): 73-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201904006.htm
    [41]
    李微, 韩森, 孙培, 等. 橡胶-纤维微表处混合料路用性能及降噪特性研究[J]. 铁道科学与工程学报, 2017, 14(8): 1623-1631. doi: 10.3969/j.issn.1672-7029.2017.08.008

    LI Wei, HAN Sen, SUN Pei, et al. Research on road performances and noise reduction characteristic of rubber-fiber micro-surfacing mixture[J]. Journal of Railway Science and Engineering, 2017, 14(8): 1623-1631. (in Chinese) doi: 10.3969/j.issn.1672-7029.2017.08.008
    [42]
    宁展. 低噪声橡胶粉微表处的制备及性能评价[D]. 西安: 长安大学, 2019.

    NING Zhan. Preparation and performance evaluation of low noise rubber particle-fiber micro-surfacing[D]. Xi'an: Chang'an University, 2019. (in Chinese)
    [43]
    范贤鹏. 水性环氧树脂/SBR乳化沥青微表处制备及性能评价[D]. 西安: 长安大学, 2020.

    FAN Xian-peng. Preparation and performance evaluation of water-based epoxy resin/SBR emulsified asphalt micro-surface treatment[D]. Xi'an: Chang'an University, 2020. (in Chinese)
    [44]
    LIU Fu-qiang, ZHENG Mu-lian, FAN Xian-peng, et al. Properties and mechanism of waterborne epoxy resin-SBR composite modified emulsified asphalt[J]. Construction and Building Materials, 2021, 274: 122059. doi: 10.1016/j.conbuildmat.2020.122059
    [45]
    曹丽萍, 侯相深, 张冉. 微表处混合料室内噪声测试方法[J]. 土木建筑与环境工程, 2012, 34(S2): 173-176. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN2012S2039.htm

    CAO Li-ping, HOU Xiang-shen, ZHANG Ran. Test method of indoor noise for micro-surfacing mix[J]. Journal of Civil, Architectural and Environmental Engineering, 2012, 34(S2): 173-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN2012S2039.htm
    [46]
    胡红松, 路国栋, 张争奇, 等. 不同路面加铺层抗滑降噪效果室内研究[J]. 铁道科学与工程学报, 2017, 14(1): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201701008.htm

    HU Hong-song, LU Guo-dong, ZHANG Zheng-qi, et al. Indoor study on anti-sliding and noise-reducing of different pavement overlays[J]. Journal of Railway Science and Engineering, 2017, 14(1): 44-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201701008.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (715) PDF downloads(115) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return