Volume 23 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
ZHANG Sha-sha, LIU Ya-chao, YANG Xiao-hua, LI An-hong, CHEN Wei-zhi, YU Ze-long, ZHAO Yan-hu. Deformation characteristics of cement stabilized macadam aggregate of high-speed railway in coarse-grained sulfate soil area[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 93-104. doi: 10.19818/j.cnki.1671-1637.2023.01.007
Citation: ZHANG Sha-sha, LIU Ya-chao, YANG Xiao-hua, LI An-hong, CHEN Wei-zhi, YU Ze-long, ZHAO Yan-hu. Deformation characteristics of cement stabilized macadam aggregate of high-speed railway in coarse-grained sulfate soil area[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 93-104. doi: 10.19818/j.cnki.1671-1637.2023.01.007

Deformation characteristics of cement stabilized macadam aggregate of high-speed railway in coarse-grained sulfate soil area

doi: 10.19818/j.cnki.1671-1637.2023.01.007
Funds:

National Natural Science Foundation of China 42101126

Natural Science Basic Research Program of Shaanxi Province 2019JM-147

Science and Technology Development Project of China Railway Group Limited 2017-major-11-04

Science and Technology Project of Qinghai Provincial Department of Transportation 2020-02

More Information
  • Author Bio:

    ZHANG Sha-sha(1982-), female, associate professor, PhD, zss_lx@126.com

  • Received Date: 2022-10-12
    Available Online: 2023-03-08
  • Publish Date: 2023-02-25
  • To explore the deformation characteristics and mechanisms of cement stabilized macadam aggregate at the culverts, bridges and other transition sections for high-speed railways under different working conditions in coarse-grained sulfate saline soil area, based on the material properties of solidified subgrade filler, the graded gravel with 0-2.5% salt content was used and mixed with different kinds and contents of cements, and the deformation characteristics tests with and without capillary water rising at normal temperature were carried out. Besides, the basic freeze-thaw cycle test of the solidified subgrade bed was performed, and the composition change was analyzed by the XRD test at the same time. Based on the test results, the typical test materials were selected to carry out the subgrade-structure model test subjected to the freeze-thaw cycle. Test results show that without capillary water supply, the deformation of the salt-bearing graded crushed stone sample prepared with ordinary cement can reach 4.2 times that of the sample mixed with 5% special cement. Particularly, with capillary water supply, the deformation of the ordinary cement mixed sample can reach 33.0 times that of the 5% special cement mixed sample. Under different salt contents, the minimum inhibition rate achieved by 3%-5% special cement stabilized graded crushed stone on the deformation reduction of corresponding ordinary cement working condition (caused by capillary water rising) is 60%-80%. Subjected to six basic freeze-thaw cycles, the final deformation of the sample with ordinary cement is 16.0 times that of the sample with high sulfate resistance cement. Under the freeze-thaw cycle condition, the maximum expansion deformation rate of stabilized macadam aggregate mixed with special cement is only 0.2% in subgrade-structure model test. In coarse-grained sulfate saline soil area, although the cement solidified subgrade filler reduces other deformations of subgrade, it is necessary to introduce special cement solidification and other engineering measures for high-speed railway and other projects with strict deformation control requirements because the surrounding salt factors are difficult to avoid and ordinary cement cannot fulfil the requirements of subgrade engineering in saline soil areas.

     

  • loading
  • [1]
    尧俊凯, 叶阳升, 王鹏程, 等. 硫酸盐侵蚀水泥改良路基段上拱研究[J]. 岩土工程学报, 2019, 41(4): 782-788. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904029.htm

    YAO Jun-kai, YE Yang-sheng, WANG Peng-cheng, et al. Subgrade heave of sulfate attacking on cement-stabilized filler[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 782-788. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904029.htm
    [2]
    ZHANG Sha-sha, ZHANG Jian-suo, GUI Yi-lin, et al. Deformation properties of coarse-grained sulfate saline soil under the freeze-thaw-precipitation cycle[J]. Cold Regions Science and Technology, 2020, 177: 103121. doi: 10.1016/j.coldregions.2020.103121
    [3]
    ZHANG Sha-sha, YANG Xiao-hua, XIE Shan-jie, et al. Experimental study on improving the engineering properties of coarse grain sulphate saline soils with inorganic materials[J]. Cold Regions Science and Technology, 2020, 170: 102909. doi: 10.1016/j.coldregions.2019.102909
    [4]
    包卫星, 杨晓华, 谢永利. 典型天然盐渍土多次冻融循环盐胀试验研究[J]. 岩土工程学报, 2006, 28(11): 1991-1995. doi: 10.3321/j.issn:1000-4548.2006.11.014

    BAO Wei-xing, YANG Xiao-hua, XIE Yong-li. Research on salt expansion of representative crude saline soil under freezing and thawing cycles[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1991-1995. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.11.014
    [5]
    张莎莎, 杨晓华, 王龙. 单因素对粗粒盐渍土的盐胀规律影响效果研究[J]. 水利学报, 2015, 46(S1): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1024.htm

    ZHANG Sha-sha, YANG Xiao-hua, WANG Long. Research on the law of salt expansion of crude coarse grained saline soil with the changing of single factors[J]. Journal of Hydraulic Engineering, 2015, 46(S1): 129-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1024.htm
    [6]
    张莎莎, 谢永利, 杨晓华, 等. 典型天然粗粒盐渍土盐胀微观机制分析[J]. 岩土力学, 2010, 31(1): 123-127. doi: 10.3969/j.issn.1000-7598.2010.01.023

    ZHANG Sha-sha, XIE Yong-li, YANG Xiao-hua, et al. Research on microstructure of crude coarse grain saline soil under freezing and thawing cycles[J]. Rock and Soil Mechanics, 2010, 31(1): 123-127. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.01.023
    [7]
    张莎莎, 王永威, 包卫星, 等. 影响粗粒硫酸盐渍土盐胀特性的敏感因素研究[J]. 岩土工程学报, 2017, 39(5): 946-952. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705027.htm

    ZHANG Sha-sha, WANG Yong-wei, BAO Wei-xing, et al. Sensitive parameters of embankment deformation behavior for coarse-grained sulfate saline soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 946-952. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705027.htm
    [8]
    杨鹏, 朱彦鹏, 曹亚鹏, 等. 含水率单次递减条件下粗颗粒硫酸盐渍土盐胀的室内模拟试验[J]. 岩土力学, 2017, 38(10): 2909-2915. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710019.htm

    YANG Peng, ZHU Yan-peng, CAO Ya-peng, et al. Experiment of salt expansion behavior for coarse saline soil containing sulphate due to drying[J]. Rock and Soil Mechanics, 2017, 38(10): 2909-2915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710019.htm
    [9]
    ZHANG Jing, LAI Yuan-ming, LI Ji-feng, et al. Study on the influence of hydro-thermal-salt-mechanical interaction in saturated frozen sulfate saline soil based on crystallization kinetics[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118868. doi: 10.1016/j.ijheatmasstransfer.2019.118868
    [10]
    LAI Yuan-ming, WAN Xu-sheng, ZHANG Ming-yi. An experimental study on the influence of cooling rates on salt expansion in sodium sulfate soils[J]. Cold Regions Science and Technology, 2016, 124: 67-76. doi: 10.1016/j.coldregions.2015.12.014
    [11]
    XIAO Ze-an, LAI Yuan-ming, ZHANG Jun. Method for calculating the liquid water fraction of saline soil during the freezing process[J]. Permafrost and Periglacial Processes, 2021, 32(1): 92-101. doi: 10.1002/ppp.2077
    [12]
    吕擎峰, 贾梦雪, 王生新, 等. 含盐量对固化硫酸盐渍土抗压强度的影响[J]. 中南大学学报(自然科学版), 2018, 49(3): 718-724. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201803027.htm

    LYU Qing-feng, JIA Meng-xue, WANG Sheng-xin, et al. Effect of salt content on compressive strength of solidified sulphate saline soil[J]. Journal of Central South University (Science and Technology), 2018, 49(3): 718-724. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201803027.htm
    [13]
    吕擎峰, 常承睿, 马博, 等. 固化硫酸盐渍土水盐迁移的试验研究[J]. 岩石力学与工程学报, 2018, 37(S2): 4290-4296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2051.htm

    LYU Qing-feng, CHANG Cheng-rui, MA Bo, et al. Experimental study on water and salt migration of solidified sulphate saline soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 4290-4296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2051.htm
    [14]
    吕擎峰, 王子帅, 何俊峰, 等. 碱激发地聚物固化盐渍土微观结构研究[J]. 长江科学院院报, 2020, 37(1): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202001016.htm

    LYU Qing-feng, WANG Zi-shuai, HE Jun-feng, et al. Microstructure of saline soil solidified with alkali-activated geopolymer[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(1): 79-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202001016.htm
    [15]
    吕擎峰, 申贝, 王生新, 等. 水玻璃固化硫酸盐渍土强度特性及固化机制研究[J]. 岩土力学, 2016, 37(3): 687-693, 727. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603011.htm

    LYU Qing-feng, SHEN Bei, WANG Sheng-xin, et al. Strength characteristics and solidification mechanism of sulphate salty soil solidified with sodium silicate[J]. Rock and Soil Mechanics, 2016, 37(3): 687-693, 727. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603011.htm
    [16]
    LYU Qing-feng, JIANG Lu-sha, MA Bo, et al. A study on the effect of the salt content on the solidification of sulfate saline soil solidified with an alkali-activated geopolymer[J]. Construction and Building Materials, 2018, 176: 68-74. doi: 10.1016/j.conbuildmat.2018.05.013
    [17]
    张莎莎, 杨晓华. 粗粒盐渍土大型冻融循环剪切试验[J]. 长安大学学报(自然科学版), 2012, 32(3): 11-16. doi: 10.3969/j.issn.1671-8879.2012.03.003

    ZHANG Sha-sha, YANG Xiao-hua. Large shear test on coarse saline soil with freeze-thaw cycle[J]. Journal of Chang'an University (Natural Science Edition), 2012, 32(3): 11-16. (in Chinese) doi: 10.3969/j.issn.1671-8879.2012.03.003
    [18]
    邓友生, 蒲毅彬, 周成林. 冻结过程对盐渍土结构变化的试验研究[J]. 冰川冻土, 2008, 30(4): 632-640. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200804016.htm

    DENG You-sheng, PU Yi-bin, ZHOU Cheng-lin. Experimental study of structure change of saline soils due to freezing[J]. Journal of Glaciology and Geocryology, 2008, 30(4): 632-640. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200804016.htm
    [19]
    梁维云, 韦昌富, 颜荣涛, 等. NaCl溶液饱和膨胀土的压缩特性及其微观机制[J]. 岩土力学, 2019, 40(12): 4759-4766. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912024.htm

    LIANG Wei-yun, WEI Chang-fu, YAN Rong-tao, et al. Microstructure and compression characteristics of NaCl solutions saturated expansive soil[J]. Rock and Soil Mechanics, 2019, 40(12): 4759-4766. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912024.htm
    [20]
    WAN Xu-sheng, LIU En-long, QIU En-xi, et al. Study on phase changes of ice and salt in saline soils[J]. Cold Regions Science and Technology, 2020, 172: 102988.
    [21]
    WAN Xu-sheng, YANG Zhao-hui. Pore water freezing characteristic in saline soils based on pore size distribution[J]. Cold Regions Science and Technology, 2020, 173: 103030.
    [22]
    WAN Xu-sheng, HU Qi-jun, LIAO Meng-ke. Salt crystallization in cold sulfate saline soil[J]. Cold Regions Science and Technology, 2017, 137: 36-47.
    [23]
    WAN Xu-sheng, LAI Yuan-ming, WANG Chong. Experimental study on the freezing temperatures of saline silty soils[J]. Permafrost and Periglacial Processes, 2015, 26: 175-187.
    [24]
    吴刚, 邴慧, 卜东升. 盐渍土与盐溶液冻结温度关系的试验研究[J]. 冰川冻土, 2019, 41(3): 615-628. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201903013.htm

    WU Gang, BING Hui, BU Dong-sheng. Experimental study on the relationship between saline soil and salt solution freezing temperature[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 615-628. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201903013.htm
    [25]
    王鹏程, 尧俊凯, 陈锋, 等. 无砟轨道路基上拱原因试验研究[J]. 铁道建筑, 2018, 58(1): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201801010.htm

    WANG Peng-cheng, YAO Jun-kai, CHEN Feng, et al. Experimental study on heaving cause of ballastless track subgrade[J]. Railway Engineering, 2018, 58(1): 43-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201801010.htm
    [26]
    杨晓华, 刘伟, 张莎莎, 等. 温度变化对粗粒硫酸盐渍土路基变形影响分析[J]. 中国公路学报, 2020, 33(3): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202003006.htm

    YANG Xiao-hua, LIU Wei, ZHANG Sha-sha, et al. Influence of temperature change on deformation of coarse-grained sulfate saline soil subgrade[J]. China Journal of Highway and Transport, 2020, 33(3): 64-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202003006.htm
    [27]
    ZHANG Sha-sha, WANG Yan-tao, XIAO Fei, et al. Large-scale model testing of high-speed railway subgrade under freeze-thaw and precipitation conditions[J]. Advances in Civil Engineering, 2019, 2019: 4245916.
    [28]
    PENG Shu-quan, WANG Fan, LI Xi-bing, et al. Experimental research on employed expanded polystyrene(EPS) for lightened sulfate heave of subgrade by thermal insulation properties[J]. Geotextiles and Geomembranes, 2020, 48(4): 516-523.
    [29]
    张莎莎, 王旭超, 杨晓华, 等. 含盐施工用水对路基填料工程特性的累加效应[J]. 交通运输工程学报, 2020, 20(6): 71-81. doi: 10.19818/j.cnki.1671-1637.2020.06.006

    ZHANG Sha-sha, WANG Xu-chao, YANG Xiao-hua, et al. Cumulative effect of saline construction water on engineering properties of subgrade filling material[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 71-81. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.006
    [30]
    LITTLE D N, NAIR S, HERBERT B. Addressing sulfate-induced heave in lime treated soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(1): 110-118.
    [31]
    杨晓华, 张莎莎, 刘伟, 等. 粗颗粒盐渍土工程特性研究进展[J]. 交通运输工程学报, 2020, 20(5): 22-40. doi: 10.19818/j.cnki.1671-1637.2020.05.002

    YANG Xiao-hua, ZHANG Sha-sha, LIU Wei, et al. Research progress on engineering properties of coarse-grained saline soil[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 22-40. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.002
    [32]
    朱叶艇, 张桓, 张子新, 等. 盾构隧道推进对邻近地下管线影响的物理模型试验研究[J]. 岩土力学, 2016, 37(S2): 151-160. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2018.htm

    ZHU Ye-ting, ZHANG Huan, ZHANG Zi-xin, et al. Physical model test study of influence of advance of shield tunnel on adjacent underground pipelines[J]. Rock and Soil Mechanics, 2016, 37(S2): 151-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2018.htm
    [33]
    王鹏程, 叶阳升, 尧俊凯, 等. 硫酸盐侵蚀条件下无砟轨道路基上拱特性研究[J]. 铁道学报, 2021, 43(6): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202106018.htm

    WANG Peng-cheng, YE Yang-sheng, YAO Jun-kai, et al. Study on heaving characteristics of ballastless track subgrade subjected to sulfate attack[J]. Journal of the China Railway Society, 2021, 43(6): 135-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202106018.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (417) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return