Volume 23 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
SUN Yan-kun, ZHANG Wei, YANG Xiong-wei, LIU Ji-hao, ZHU Heng-jia, LIU Yan-xi, QIN Jia-hao. Review on aircraft towing taxi technologies[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 23-43. doi: 10.19818/j.cnki.1671-1637.2023.03.002
Citation: SUN Yan-kun, ZHANG Wei, YANG Xiong-wei, LIU Ji-hao, ZHU Heng-jia, LIU Yan-xi, QIN Jia-hao. Review on aircraft towing taxi technologies[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 23-43. doi: 10.19818/j.cnki.1671-1637.2023.03.002

Review on aircraft towing taxi technologies

doi: 10.19818/j.cnki.1671-1637.2023.03.002
Funds:

National Natural Science Foundation of China U2033208

National Natural Science Foundation of China 12002367

Fundamental Research Funds for the Central Universities 3122020031

More Information
  • Author Bio:

    SUN Yan-kun(1980-), female, associate professor, PhD, yksun1234@163.com

    ZHANG Wei(1979-), male, professor, PhD, weizha_2001@163.com

  • Received Date: 2023-02-03
    Available Online: 2023-07-07
  • Publish Date: 2023-06-25
  • The essence of aircraft towing taxi mode was studied. The connotation and driving factors of towing taxi were proposed, and six key issues to realize aircraft towing taxi were put forward, including kinematics and environmental load analysis during towing taxi, multibody system dynamics of towing taxi, structural mechanical responses of the nose landing gear of aircraft, motion perception and control of the system, towing taxi equipment and physical test platform, and impact of towing taxi on airport operation rules. In addition, the research status and development trend of the six key issues were analyzed, and the technical difficulties and challenges faced in implementing the new mode were explored. Analysis results show that compared with traditional towing, the kinematics calculation of towing taxi requires higher precision and real-time performance, a high-precision algorithm of system motion should be established to realize the safety estimation of towing taxi, and the coupling effect of various factors such as the towing taxi system motion status of high-speed and heavy-duty aircraft, airport road conditions, and control inputs, may lead to limit phenomena, such as lateral instability and detachment. The research on the dynamic behavior of the system needs to consider the nonlinear characteristics of the structure and system. In order to ensure the safety of nose landing gear subjected to longitudinal traction and vertical vibration coupling conditions under long-distance towing taxi, it is necessary to study its structural dynamic response and ultimate working condition behavior mechanism. Man-machine interactive mode and pilot perception control method need to be analyzed to achieve the precise control of towing taxi movements by pilots, and tests are required for the verification. The using time of aircraft engines during ground operation can be shortened by towing taxi technology, and fuel consumption and carbon emissions can be reduced, but the complexity of airport surface operations will increase. Therefore, a new scene operation management rules in airport flight area system should be established.

     

  • loading
  • [1]
    WOLLENHEIT R, MVHLHAUSEN T. Operational and environmental assessment of the electric taxi based on fast-time simulation[J]. Transportation Research Record, 2013, 2336(1): 36-42. doi: 10.3141/2336-05
    [2]
    占新民. 飞机地面滑行/推进系统研究[J]. 航空维修与工程, 2022(1): 88-92. https://www.cnki.com.cn/Article/CJFDTOTAL-KONG202201027.htm

    ZHAN Xin-min. Research on aircraft ground propulsion systems[J]. Aviation Maintenance and Engineering, 2022(1): 88-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KONG202201027.htm
    [3]
    RE F. Viability and state of the art of environmentally friendly aircraft taxiing systems[C]//IEEE. 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion. New York: IEEE, 2012: 1-6.
    [4]
    TABARES D A, MORA-CAMINO F. Aircraft ground operations: steps towards automation[J]. CEAS Aeronautical Journal, 2019, 10(3): 965-974. doi: 10.1007/s13272-019-00390-5
    [5]
    BERNATZKY T. Automation concept for cockpit crew integration into trajectory-based dispatch towing[D]. Darmstadt: Technischen Universität Darmstadt, 2019.
    [6]
    LUKIC M, HEBALA A, GIANGRANDE P, et al. State of the art of electric taxiing systems[C]//IEEE. 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC). New York: IEEE, 2019: 1-6.
    [7]
    COETZEE E, KRAUSKOPF B, LOWENBERG M. Analysis of medium-speed runway exit maneuvers[J]. Journal of Aircraft, 2011, 48(5): 1553-1564. doi: 10.2514/1.C031276
    [8]
    DZIKUS N M, WOLLENHEIT R, SCHAEFER M, et al. The benefit of innovative taxi concepts: the impact of airport size, fleet mix and traffic growth[C]//AIAA. 2013 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2013: 1-16.
    [9]
    HUANG M Y, NIE H, ZHANG M. Analysis of ground handling characteristic of aircraft with electric taxi system[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(6): 1546-1561. doi: 10.1177/0954407018764163
    [10]
    孟岩. 飞机牵引车发展前景浅析[J]. 商用汽车, 2014(16): 16-17. doi: 10.3969/j.issn.1009-4903.2014.16.004

    MENG Yan. Analysis on the development prospect of aircraft tractor[J]. Commercial Vehicle, 2014(16): 16-17. (in Chinese) doi: 10.3969/j.issn.1009-4903.2014.16.004
    [11]
    WENNER C A, DRURY C G. Analyzing human error in aircraft ground damage incidents[J]. International Journal of Industrial Ergonomics, 2000, 26(2): 177-199. doi: 10.1016/S0169-8141(99)00065-7
    [12]
    Boeing. Statistical summary of commercial jet airplane accidents: Worldwide Operations 1959-2008[R]. Seattle: Boeing, 2009.
    [13]
    POSTORINO M N, MANTECCHINI L, PAGANELLI F. Improving taxi-out operations at city airports to reduce CO2 emissions[J]. Transport Policy, 2019, 80: 167-176. doi: 10.1016/j.tranpol.2018.09.002
    [14]
    GUO Rui, ZHANG Yu, WANG Qing. Comparison of emerging ground propulsion systems for electrified aircraft taxi operations[J]. Transportation Research Part C: Emerging Technologies, 2014, 44(1): 98-109.
    [15]
    DIEKE-MEIER F, FRICKE H. Expectations from a steering control transfer to cockpit crews for aircraft pushback[C]//ACM. Proceedings of the 2nd International Conference on Application and Theory of Automation in Command and Control Systems. New York: ACM, 2012: 62-70.
    [16]
    VAN OOSTEROM S, MITICI M, HOEKSTRA J. Dispatching a fleet of electric towing vehicles for aircraft taxiing with conflict avoidance and efficient battery charging[J]. Transportation Research Part C: Emerging Technologies, 2023, 147: 103995. doi: 10.1016/j.trc.2022.103995
    [17]
    FRANK S, SCHACHTEBECK P M, HECKER P. Sensor concept for highly-automated airport tugs for reduced emisson taxi operations[C]//ICAS. 30th Congress of the International Council of the Aeronautical Sciences. Bonn: ICAS, 2016: 1-9.
    [18]
    HEIN K, BAUMANN S. Acoustical comparison of conventional taxiing and dispatch towing-taxibot's contribution to ground noise abatement[C]//ICAS. 30th Congress of the International Council of the Aeronautical Sciences. Bonn: ICAS, 2016: 1-7.
    [19]
    唐建军, 郭卫东, 徐东光, 等. 飞机电动滑行系统驱动特性及节能减排性能分析[J]. 北京航空航天大学学报, 2020, 46(8): 1545-1554. doi: 10.13700/j.bh.1001-5965.2019.0487

    TANG Jian-jun, GUO Wei-dong, XU Dong-guang, et al. Driving characteristics and energy saving and emission reduction performance of aircraft electric taxiing system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1545-1554. (in Chinese) doi: 10.13700/j.bh.1001-5965.2019.0487
    [20]
    Airbus. Aircraft characteristics airport and maintenance planning[R]. Blagnac: Airbus, 2005.
    [21]
    王燕玲. 地面支援设备引起飞机损伤的分析[J]. 民用飞机设计与研究, 2011(2): 60-64. doi: 10.19416/j.cnki.1674-9804.2011.02.016

    WANG Yan-ling. Analysis on aircraft damage caused by GSE[J]. Civil Aircraft Design and Research, 2011(2): 60-64. (in Chinese) doi: 10.19416/j.cnki.1674-9804.2011.02.016
    [22]
    解本铭, 赵宏伟, 王伟, 等. 遥控无杆飞机牵引车牵引转弯的运动学研究[J]. 机械设计与制造, 2018(7): 127-129. doi: 10.3969/j.issn.1001-3997.2018.07.036

    XIE Ben-ming, ZHAO Hong-wei, WANG Wei, et al. Kinematics research on towing turning of remote control towbarless aircraft tractor[J]. Machinery Design and Manufacture, 2018(7): 127-129. (in Chinese) doi: 10.3969/j.issn.1001-3997.2018.07.036
    [23]
    苟能亮, 苑强波, 张明. 四点式起落架飞机地面滑跑转弯分析[J]. 航空工程进展, 2016, 7(1): 17-23. doi: 10.16615/j.cnki.1674-8190.2016.01.003

    GOU Neng-liang, YUAN Qiang-bo, ZHANG Ming. Analysis of aircraft landing gear with four wheels ground taxiing turning[J]. Advances in Aeronautical Science and Engineering, 2016, 7(1): 17-23. (in Chinese) doi: 10.16615/j.cnki.1674-8190.2016.01.003
    [24]
    王志, 安喜平, 齐向阳, 等. 随行式飞机牵引车运动特性试验研究[J]. 航空工程进展, 2018, 9(增1): 140-145.

    WANG Zhi, AN Xi-ping, QI Xiang-yang, et al. Test and study on motion characteristics of aircraft tractor operated by walker[J]. Advances in Aeronautical Science and Engineering, 2018, 9(S1): 140-145. (in Chinese)
    [25]
    任少云, 张云侠, 张建武, 等. 牵引车牵引运动的稳定性研究[J]. 上海交通大学学报, 2005, 39(9): 1470-1475, 1480. doi: 10.3321/j.issn:1006-2467.2005.09.020

    REN Shao-yun, ZHANG Yun-xia, ZHANG Jian-wu, et al. The stability analysis of towing behavior for towing tractor[J]. Journal of Shanghai Jiao Tong University, 2005, 39(9): 1470-1475, 1480. (in Chinese) doi: 10.3321/j.issn:1006-2467.2005.09.020
    [26]
    刘洁, 韩维, 徐卫国, 等. 基于滚动时域的舰载机甲板运动轨迹跟踪最优控制[J]. 航空学报, 2019, 40(8): 175-200.

    LIU Jie, HAN Wei, XU Wei-guo, et al. Optimal path tracking control of carrier-based aircraft on the deck based on RHC[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 175-200. (in Chinese)
    [27]
    刘洁, 董献洲, 韩维, 等. 采用牛顿迭代保辛伪谱算法的舰载机甲板路径规划[J]. 浙江大学学报(工学版), 2020, 54(9): 1827-1838. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202009021.htm

    LIU Jie, DONG Xian-zhou, HAN Wei, et al. Trajectory planning for carrier aircraft on deck using Newton Symplectic pseudo-spectral method[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(9): 1827-1838. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202009021.htm
    [28]
    王能建, 刘红博, 周丽杰. 甲板上舰载机牵引系统的行驶特性分析[J]. 中南大学学报(自然科学版), 2013, 44(6): 2304-2310. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201306017.htm

    WANG Neng-jian, LIU Hong-bo, ZHOU Li-jie. Moving characteristics analysis of carrier-based aircraft traction system on deck[J]. Journal of Central South University (Science and Technology), 2013, 44(6): 2304-2310. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201306017.htm
    [29]
    周丽杰. 舰船上牵引车-飞机系统稳定性研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.

    ZHOU Li-jie. Research of stability for tractor-aircraft system on ship[D]. Harbin: Harbin Engineering University, 2012. (in Chinese)
    [30]
    朱敏, 刘晖, 陈舒文. 凹坑路面条件下飞机地面牵引载荷的仿真分析[J]. 机械制造与自动化, 2014, 43(2): 94-98. doi: 10.3969/j.issn.1671-5276.2014.02.031

    ZHU Min, LIU Hui, CHEN Shu-wen. Simulation analysis of aircraft ground traction load under pit road conditions[J]. Machine Building and Automation, 2014, 43(2): 94-98. (in Chinese) doi: 10.3969/j.issn.1671-5276.2014.02.031
    [31]
    刘成鑫. 飞机地面牵引安全性研究[D]. 南京: 南京航空航天大学, 2018.

    LIU Cheng-xin. Research on the safety of aircraft ground traction[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [32]
    李福海. 飞机地面牵引移动与停放安全技术研究[D]. 南京: 南京航空航天大学, 2016.

    LI Fu-hai. Research on aircraft's towing and parking safety technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
    [33]
    朱敏. 飞机地面牵引载荷分析[D]. 南京: 南京航空航天大学, 2013.

    ZHU Min. Analysis of aircraft ground traction load[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese)
    [34]
    陈舒文, 刘晖, 李福海, 等. 含接触碰撞的飞机地面牵引载荷分析[J]. 哈尔滨工程大学学报, 2017, 38(11): 1794-1799. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201711022.htm

    CHEN Shu-wen, LIU Hui, LI Fu-hai, et al. Research on aircraft towing load with contact-impact effects[J]. Journal of Harbin Engineering University, 2017, 38(11): 1794-1799. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201711022.htm
    [35]
    肖欢. 牵引车-飞机系统牵引作业仿真技术研究[D]. 武汉: 华中科技大学, 2008.

    XIAO Huan. Research on simulation technology of towing operation of tractor-aircraft system[D]. Wuhan: Huazhong University of Science and Technology, 2008. (in Chinese)
    [36]
    温琦, 陈志, 王志, 等. 舰船摇摆环境飞机牵引车牵引特性仿真分析[J]. 哈尔滨工程大学学报, 2011, 32(8): 1052-1057. doi: 10.3969/j.issn.1006-7043.2011.08.016

    WEN Qi, CHEN Zhi, WANG Zhi, et al. Simulation analysis on traction characteristics of aircraft tow tractors under ship sway[J]. Journal of Harbin Engineering University, 2011, 32(8): 1052-1057. (in Chinese) doi: 10.3969/j.issn.1006-7043.2011.08.016
    [37]
    沈圳. 飞机无杆牵引安全技术研究[D]. 南京: 南京航空航天大学, 2019.

    SHEN Zhen. Research on the safety technology of aircraft towbarless traction[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese)
    [38]
    徐尧, 刘景光. 民用飞机动滑跑起落架载荷计算方法[J]. 江苏科技信息, 2018, 35(20): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-KJXY201820011.htm

    XU Yao, LIU Jing-guang. An engineering approach to calculate dynamic taxi landing gear loads[J]. Jiangsu Science and Technology Information, 2018, 35(20): 37-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJXY201820011.htm
    [39]
    LIU Y C, IACOMINI D, POWELL B, et al. Development, testing, and assessment of a kinematic path-following model for towing vehicle systems[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2019, 3(1): 57-70. doi: 10.4271/10-03-01-0005
    [40]
    ZHANG W, ZHAO J B. Analysis on nonlinear stiffness and vibration isolation performance of scissor-like structure with full types[J]. Nonlinear Dynamics, 2016, 86(1): 17-36. doi: 10.1007/s11071-016-2869-z
    [41]
    李相彬, 赵又群. 装有平衡悬架半挂汽车列车的平顺性建模与仿真分析[J]. 重庆理工大学学报(自然科学), 2011, 25(11): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201111005.htm

    LI Xiang-bin, ZHAO You-qun. Modeling and simulation of ride comfort of tractor semi-trailer with balanced suspension[J]. Journal of Chongqing University of Technology (Natural Science), 2011, 25(11): 18-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201111005.htm
    [42]
    LI X L, FU W K. Objective evaluation method of vehicle ride comfort based on small-sample statistics[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2021, 5(1): 99-109.
    [43]
    KUSHAIRI S, SCHMIDT R, OMAR A R, et al. Tractor-trailer modelling and validation[J]. International Journal of Heavy Vehicle Systems, 2014, 21(1): 64-82. doi: 10.1504/IJHVS.2014.057802
    [44]
    祝恒佳, 吕晓, 张柏枝, 等. 考虑柔性车架的无杆飞机牵引系统平顺性研究[J]. 机械科学与技术, 2022, 41(9): 1458-1467. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202209022.htm

    ZHU Heng-jia, LYU Xiao, ZHANG Bai-zhi, et al. Study on ride comfort of towbarless aircraft taxiing system considering vehicle frame flexibility[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(9): 1458-1467. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202209022.htm
    [45]
    WANG Hui, LYU Xiao, ZHANG Wei, et al. Study on vibration characteristics of the towbarless aircraft taxiing system[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2022, 6(2): 175-188.
    [46]
    ZHU H J, ZHANG B Z, LV X, et al. Optimal chassis suspension design for towbarless towing vehicle for aircraft taxiing[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2022, 4(4): 1445-1453.
    [47]
    解本铭, 朱俊伟, 王伟, 等. 飞机无杆牵引车多工况牵引的平顺性仿真及优化[J]. 机械设计与制造, 2020(10): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ202010002.htm

    XIE Ben-ming, ZHU Jun-wei, WANG Wei, et al. Simulation and optimization of ride comfort on multi-working for aircraft rodless tractor[J]. Machinery Design and Manufacture, 2020(10): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ202010002.htm
    [48]
    王伟, 朱俊伟, 张威. 飞机无杆牵引车系统振动特性仿真分析及优化[J]. 计算机仿真. 2020, 37(6): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ202006013.htm

    WANG Wei, ZHU Jun-wei, ZHANG Wei. Simulation analysis and optimization of vibration characteristics of aircraft rodless tractor system[J]. Computer Simulation, 2020, 37(6): 54-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ202006013.htm
    [49]
    朱贺, 王立文, 罗心悦. 空气悬架无杆飞机牵引车动力学仿真分析[J]. 机床与液压, 2018, 46(13): 144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYY201813038.htm

    ZHU He, WANG Li-wen, LUO Xin-yue. Dynamics simulation analysis of air suspension towbarless towing vehicle[J]. Machine Tool and Hydraulics, 2018, 46(13): 144-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCYY201813038.htm
    [50]
    朱俊伟. 飞机无杆牵引车多工况牵引的动力学分析[D]. 天津: 中国民航大学, 2019.

    ZHU Jun-wei. Dynamic analysis of aircraft towbarless tow vehicles undermulti-operating conditions[D]. Tianjin: Civil Aviation University of China, 2019. (in Chinese)
    [51]
    高红博. 半挂汽车列车转弯制动方向稳定性及控制策略研究[D]. 长春: 吉林大学, 2014.

    GAO Hong-bo. Research on directional stability and control strategy of tractor-semitrailer steering and braking[D]. Changchun: Jilin University, 2014. (in Chinese)
    [52]
    李月. 新一代货运挂车列车——双挂汽车列车行驶稳定性研究[D]. 北京: 交通运输部公路科学研究所, 2020.

    LI Yue. Research on the handling stability of a new generation of combinations of vehicles the double road train[D]. Beijing: Research Institute of Highway Ministry of Transport, 2020. (in Chinese)
    [53]
    AHOKAS J, KOSONEN S. Dynamic behaviour of a tractor- trailer combination during braking[J]. Biosystems Engineering, 2003, 85(1): 29-39.
    [54]
    戚基艳, 金嘉琦, 邹姗姗. 舰载机无杆式牵引车纵向动力学分析[J]. 兵器装备工程学报, 2020, 40(1): 193-199. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI202001039.htm

    QI Ji-yan, JIN Jia-qi, ZOU Shan-shan. Longitudinal dynamics analysis of carrier-based towbarless aircraft tractor[J]. Journal of Ordnance Equipment Engineering, 2020, 40(1): 193-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI202001039.htm
    [55]
    WANG N J, LIU H B, YANG W H. Simulation study of the backward-motion for a aircraft towbarless tractor[C]//IEEE. 2013 IEEE Conference Anthology. New york: IEEE, 2014: 1-5.
    [56]
    周丽杰, 王能建, 张德福. 牵引车-飞机系统的自适应滑模变结构控制[J]. 控制理论与应用, 2012, 29(4): 529-534. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201204020.htm

    ZHOU Li-jie, WANG Neng-jian, ZHANG De-fu. Adaptive and variable structure control with sliding mode for tractor-aircraft system[J]. Control Theory and Applications, 2012, 29(4): 529-534. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201204020.htm
    [57]
    史会涛. 无杆飞机牵引车制动性分析[D]. 哈尔滨: 哈尔滨工程大学, 2010.

    SHI Hui-tao. Research on braking performance of the towbarless aircraft tractor[D]. Harbin: Harbin Engineering University, 2010. (in Chinese)
    [58]
    毕振瀚. 大型飞机起落架地面转弯性能仿真与分析[D]. 南京: 南京航空航天大学, 2013.

    BI Zhen-han. Analysis and simulation of turning performance for large civil aircraft landing gears[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese)
    [59]
    PACEJKA H B, BAKKER E. The magic formula tyre model[J]. Vehicle System Dynamics, 1992, 21(S1): 1-18.
    [60]
    GUO K, LU D. UniTire: unified tire model for vehicle dynamic simulation[J]. Vehicle System Dynamics, 2007, 45(S1): 79-99.
    [61]
    GIPSER M. FTire and puzzling tyre physics: teacher, not student[J]. Vehicle System Dynamics, 2016, 54(1): 113-127.
    [62]
    MILWITZKY B, COOK F E. Analysis of landing-gear behavior[R]. Washington: NACA, 1953.
    [63]
    DING Yong-wei, WEI Xiao-hui, NIE Hong, et al, Discharge coefficient calculation method of landing gear shock absorber and its influence on drop dynamics[J]. Journal of Vibroengineering, 2018, 20(7): 2550-2562.
    [64]
    曹荣生. 飞机起落架模型建立及着陆性能仿真分析[D]. 哈尔滨: 哈尔滨工程大学, 2007.

    CAO Rong-sheng. Establishment of airplane landing gear model and simulation analysis of landing behavior[D]. Harbin: Harbin EngineeringUniversity, 2007. (in Chinese)
    [65]
    CAPUTO F, DE LUCA A, GRECO A, et al. Investigation on the static and dynamic structural behaviors of a regional aircraft main landing gear by a new numerical methodology[J]. Frattura ed Integrità Strutturale, 2018, 12(43): 191-204.
    [66]
    曹大树, 姚红宇, 薛彩军, 等. 某型飞机前起落架断裂损伤分析[J]. 材料工程, 2008(6): 36-39, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC200806011.htm

    CAO Da-shu, YAO Hong-yu, XUE Cai-jun, et al. Fracture damage analysis of a nose landing gear[J]. Journal of Materials Engineering, 2008(6): 36-39, 56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC200806011.htm
    [67]
    李跃明, 李晓云, 柴怡君, 等. 飞机新牵引滑出方式下前起落架动响应分析[J]. 航空学报, 2022, 43(6): 526915. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202206013.htm

    LI Yue-ming, LI Xiao-yun, CHAI Yi-jun, et al. Dynamic response analysis of nose landing gear in aircraft new towing taxi mode[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202206013.htm
    [68]
    CHEN Shu-wen, LIU Hui, LI Fu-hai. Analysis of Boeing 737 aircraft towing accidents[J]. Engineering Failure Analysis, 2017, 80: 234-240.
    [69]
    吴卫国, 孙建桥, 冷永刚, 等. 飞机起落架动力学建模及着陆随机响应分析[J]. 航空学报, 2016, 37(4): 1228-1239. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201604015.htm

    WU Wei-guo, SUN Jian-qiao, LENG Yong-gang, et al. Dynamic modeling of landing gear and its random response analysis[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1228-1239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201604015.htm
    [70]
    刘刚. 飞机起落架降落动响应研究及强度计算[D]. 哈尔滨: 哈尔滨工程大学, 2015.

    LIU Gang. Dynamic response research and strength calculation of aircraft landing gear[D]. Harbin: Harbin Engineering University, 2015. (in Chinese)
    [71]
    贾腾. 飞机起落架随机动力响应的数值分析[D]. 天津: 天津大学, 2014.

    JIA Teng. Numerical analysis of random dynamics response of landing gear of the aircraft[D]. Tianjin: Tianjin University, 2014. (in Chinese)
    [72]
    WANG Di, WU Lei, ZHU Yun, et al. Vibration of a plate coupled with fluid considering the effects of stress and deformation under hydrostatic load[J]. Thin-Walled Structures, 2019, 145: 106413.
    [73]
    宋召军. 尺度效应和环境温度对船体结构极限强度的影响研究[D]. 武汉: 华中科技大学, 2019.

    SONG Zhao-jun. Study on the influences of dimensional effect and ambient temperature on the ultimate strength of ship structures[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese)
    [74]
    KHARGHANI N, SOARES C G, Analytical and experimental study of the ultimate strength of delaminated composite laminates under compressive loading[J]. Composite Structures, 2019, 228: 111355.
    [75]
    解本铭, 韩明明, 张攀, 等. 飞机牵引车语音识别的动态时间规整优化算法[J]. 计算机应用, 2018, 38(6): 1771-1776, 1789. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201806042.htm

    XIE Ben-ming, HAN Ming-ming, ZHANG Pan, et al. Optimization algorithm of dynamic time warping for speech recognition of aircraft towing vehicle[J]. Journal of Computer Applications, 2018, 38(6): 1771-1776, 1789. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201806042.htm
    [76]
    张攀, 房体会, 张威, 等. 智能飞机牵引机器人语音控制研究[J]. 起重运输机械, 2019(7): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-QZJJ201907039.htm

    ZHANG Pan, FANG Ti-hui, ZHANG Wei, et al. Research on voice control of intelligent aircraft towing robot[J]. Hoisting and Conveying Machinery, 2019(7): 104-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QZJJ201907039.htm
    [77]
    SAINI S, NIKHIL S, KONDA K R, et al. An efficient vision-based traffic light detection and state recognition for autonomous vehicles[C]//IEEE. 2017 IEEE Intelligent Vehicles Symposium (IV). New York: IEEE, 2017: 606-611.
    [78]
    WANG Wen-shuo, XI Jun-qiang, LIU Chang, et al. Human-centered feed-forward control of a vehicle steering system based on a driver's path-following characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(6): 1440-1453.
    [79]
    ZAMMIT C, ZAMMIT-MANGION D. A control technique for automatic taxi in fixed wing[C]//AIAA. 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014: 1163.
    [80]
    张攀, 柳阳, 刘新杰, 等. 改进的智能飞机牵引车路径导航纯追踪算法[J]. 计算机工程, 2019, 45(5): 267-271. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201905044.htm

    ZHANG Pan, LIU Yang, LIU Xin-jie, et al. Improved pure pursuit algorithm for intelligent aircraft tractor path navigation[J]. Computer Engineering, 2019, 45(5): 267-271. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201905044.htm
    [81]
    孙艳坤, 杨慧, 张威, 等. 飞机牵引滑行入港安全运动路径生成及其轨迹跟踪控制方法[J]. 交通信息与安全, 2022, 40(5): 91-101. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202205010.htm

    SUN Yan-kun, YANG Hui, ZHANG WEI. A method for safe moving paths and tracking & control of the trajectory of towed taxiing-in aircrafts[J]. Journal of Transport Information and Safety, 2022, 40(5): 91-101. (inChinese https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202205010.htm
    [82]
    WANG Neng-jian, LIU Hong-bo, YANG Wan-hui. Path-tracking control of a tractor-aircraft system[J]. Journal of Marine Science and Application, 2012, 11(4): 512-517.
    [83]
    王能建, 周丽杰. 飞机牵引车自动转向控制[J]. 哈尔滨工程大学学报, 2011, 32(10): 1346-1350. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201110017.htm

    WANG Neng-jian, ZHOU Li-jie. Research on the active steering control of an aircraft tractor[J]. Journal of Harbin Engineering University, 2011, 32(10): 1346-1350. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201110017.htm
    [84]
    LIU Hong-bo, YANG Xiao-dong, LI Yue-feng, et al. Adaptive backstepping controller to improve handling stability of tractor-aircraft system on deck[C]//IEEE. 15th International Conference on Ubiquitous Robots (UR). New York: IEEE, 2018: 839-846.
    [85]
    宁文祥. 德国Goldhofer公司的现代化飞机牵引车[J]. 专用汽车, 2011(11): 47-49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYQC201111015.htm

    NING Wen-xiang. Modern aircraft tractor of Goldhofer company in Germany[J]. Special Purpose Vehicle, 2011(11): 47-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZYQC201111015.htm
    [86]
    洪振宇, 许致华, 张志旭, 等. 无杆飞机牵引车机轮举升机构的概念设计与尺度综合[J]. 机械设计, 2013, 30(11): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ201311012.htm

    HONG Zhen-yu, XU Zhi-hua, ZHANG Zhi-xu, et al. Conceptual design and dimensional synthesis of nosewheel lifting mechanism in a towbarless aircraft towing tractor[J]. Journal of Machine Design, 2013, 30(11): 47-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ201311012.htm
    [87]
    母梦新. 无杆牵引对民机前起落架的影响研究[D]. 南京: 南京航空航天大学, 2021.

    MU Meng-xin. Research on the effect of civil aircraft nose landing gear by towbarless traction[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021. (in Chinese)
    [88]
    王志. 传统飞机牵引车的现状与发展[J]. 商用汽车, 2007(2): 92-94, 99. https://www.cnki.com.cn/Article/CJFDTOTAL-YSCL200702025.htm

    WANG Zhi. Traditional aeroplane tractors—today and tomorrow[J]. Commercial Vehicle, 2007(2): 92-94, 99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSCL200702025.htm
    [89]
    温琦, 王志, 武崇道. 并联混合动力飞机牵引车控制系统设计与试验[J]. 农业机械学报, 2007, 38(8): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200708008.htm

    WEN Qi, WANG Zhi, WU Chong-dao. Approach to control system of parallel hybrid electric aircraft tow tractor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(8): 34-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200708008.htm
    [90]
    赵立军, 姜继海. 飞机牵引车液压驱动混合动力系统设计[J]. 机床与液压, 2009, 37(12): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYY200912023.htm

    ZHAO Li-jun, JIANG Ji-hai. Design for the system of hydraulic drive hybrid power in aircraft towing tractor[J]. Machine Tool and Hydraulics, 2009, 37(12): 74-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCYY200912023.htm
    [91]
    赵立军, 王昕, 姜继海. 液压混合动力飞机牵引车制动控制系统[J]. 哈尔滨工业大学学报, 2011, 43(9): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201109017.htm

    ZHAO Li-jun, WANG Xin, JIANG Ji-hai. Study on brake control system of aircraft towing tractor base on hydraulic hybrid[J]. Journal of Harbin Institute of Technology, 2011, 43(9): 81-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201109017.htm
    [92]
    张军, 文川, 阳星, 等. 基于ADRC的电传动飞机牵引车控制系统设计[J]. 北京航空航天大学学报, https://doi.org/10.13700/j.bh.1001-5965.2021.0377. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202305003.htm

    ZHANG Jun, WEN Chuan, YANG Xing, et al. Electric aircraft tug velocity control based on active disturbance rejection control (ADRC)[J]. Journal of Beijing University of Aeronautics and Astronautics, https://doi.org/10.13700/j.bh.1001-5965.2021.0377. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202305003.htm
    [93]
    王伟伟, 田晋跃, 刘凯. 全液压飞机牵引车牵引特性分析[J]. 现代制造工程, 2011(4): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201104019.htm

    WANG Wei-wei, TIAN Jin-yue, LIU Kai. Analysis of power match for aircraft tractor with hydrostatic transmission[J]. Modern Manufacturing Engineering, 2011(4): 73-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201104019.htm
    [94]
    王意. QFY系列飞机牵引车的液压传动装置[J]. 中国机械工程, 2001(3): 276-279. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX200103011.htm

    WANG Yi. Hydrostatic transmission of QFY series aircraft tow tractors[J]. China Mechanical Engineering, 2001(3): 276-279. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX200103011.htm
    [95]
    HEINRICH M T E. On the concept of electric taxiing for midsize commercial aircraft: a power system and architecture investigation[D]. Hamilton: McMaster University, 2015.
    [96]
    GAMON M A. Evaluation of the impact of towing the L-1011 airplane at Boston Logan Airport[R]. Washington DC: U.S. Department of Transportation, 1980.
    [97]
    RADEV V. Application of criteria of aircraft tow tractors[C]//SAE International. Aerospace Technology Conference and Exposition. Warrendale: SAE International, 1987: 871816.
    [98]
    吴光炬. 无杆飞机牵引车夹持举升机构试验方法的研究[D]. 大连: 大连理工大学, 2016.

    WU Guang-ju. Research on the test method of the clamping and lifting mechanism of the towbar-less aircraft towing vehicle[D]. Dalian: Dalian University of Technology, 2016. (in Chinese)
    [99]
    高建树, 梁慧中, 孟祥森. 无杆飞机牵引车牵引力检测方法[J]. 科学技术与工程, 2021, 21(12): 5151-5156. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202112059.htm

    GAO Jian-shu, LIANG Hui-zhong, MENG Xiang-sen. Detecting method of towbarless aircraft tractor traction[J]. Science Technology and Engineering, 2021, 21 (12): 5151-5156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202112059.htm
    [100]
    SIRIGU G, CASSARO M, BATTIPEDE M, et al. A route selection problem applied to auto-piloted aircraft tugs[J]. WSEAS Transactions on Electronics, 2017, 8: 27-40.
    [101]
    SALIHU A L, LLOYD S M, AKGUNDUZ A. Electrification of airport taxiway operations: a simulation framework for analyzing congestion and cost[J]. Transportation Research Part D: Transport and Environment, 2021, 97: 102962.
    [102]
    BATTIPEDE M, CORTE A D, VAZZOLA M, et al. Innovative airplane ground handling system for green operations[C]//ICAS. 27th Congress of the International Council of the Aeronautical Sciences. Bonn: ICAS, 2010: 5128-5134.
    [103]
    KHAMMASH L, MANTECCHINI L, REIS V. Micro-simulation of airport taxiing procedures to im-prove operation sustainability: Application of semi-robotic towing tractor[C]//IEEE. 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems. New York: IEEE, 2017: 616-621.
    [104]
    李楠, 张红飞. 航空器场面滑行污染物排放计算研究[J]. 环境科学学报, 2017, 37(5): 1872-1876. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201705031.htm

    LI Nan, ZHANG Hong-fei. Calculating aircraft pollutant emissions during taxiing at the airport[J]. Acta Scientiae Circumstantiae, 2017, 37(5): 1872-1876. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201705031.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (916) PDF downloads(127) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return