| Citation: | XIONG Jia-yang, SHEN Zhi-yun, CHI Mao-ru, WU Xing-wen, LIANG Shu-lin. Review on high-speed maglev train technology[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 1-23. doi: 10.19818/j.cnki.1671-1637.2025.02.001 |
| [1] |
THORNTON R D. Efficient and affordable maglev opportunities in the United States[J]. Proceedings of the IEEE, 2009, 97(11): 1901-1921. doi: 10.1109/JPROC.2009.2030251
|
| [2] |
LUO Wei-ning, WANG Qiang. Maglev train and prospect about the future[J]. Silicon Valley, 2013, 6(5): 2, 11.
|
| [3] |
GOU J S. Development status and global competition trends analysis of maglev transportation technology based on patent data[J]. Urban Rail Transit, 2018, 4(3): 117-129. doi: 10.1007/s40864-018-0087-3
|
| [4] |
PENG Hao. International research situation and technical theme analysis of key technologies for high-speed maglev trains[J]. High-Technology and Commercialization, 2022, 28(3): 40-47.
|
| [5] |
MEINS J, MILLER L, MAYER W J. The high speed maglev transport system TRANSRAPID[J]. IEEE Transactions on Magnetics, 1988, 24(2): 808-811. doi: 10.1109/20.11347
|
| [6] |
SU Jing-qi. Analysis on the concept of Hyperloop[J]. Modern Urban Transit, 2021(4): 134-137.
|
| [7] |
ANTELEFF W, BARNARD G, KURTZ C, et al. Shanghai maglev high-speed rail[J]. Science and Technology of West China, 2005(6): 54-56.
|
| [8] |
WU Xiang-ming. Construction of Shanghai maglev demonstration line[J]. China Transportation Review, 2003, 25(8): 38-39, 48.
|
| [9] |
ZHOU Hou-wen, CHEN Xu. Research on necessity and development strategy of developing high-speed maglev in China[J]. Electric Drive for Locomotives, 2021(2): 1-5.
|
| [10] |
SU Jing-qi. Feasibility analysis of Hyperloop[J]. Modern Urban Transit, 2020(5): 114-118.
|
| [11] |
FENG Zhong-wei, FANG Xing, LI Hong-mei, et al. Technological development of high speed maglev system based on low vacuum pipeline[J]. Strategic Study of CAE, 2018, 20(6): 105-111.
|
| [12] |
LIAN Ji-san. Principle and technology characteristic of maglev vehicle[J]. Technology for Electric Locomotives, 2001(3): 23-26. doi: 10.3969/j.issn.1672-1187.2001.03.008
|
| [13] |
ZHANG Rui-hua, YAN Lu-guang, XU Shan-gang. Comparison of several projects of high speed maglev[J]. Advanced Technology of Electrical Engineering and Energy, 2004, 23(2): 46-50. doi: 10.3969/j.issn.1003-3076.2004.02.012
|
| [14] |
DENG Zi-gang, ZHANG Yong, WANG Bo, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063-1072.
|
| [15] |
LIU Ting. Research on vehicle—guideway coupling dynamics of hi-speed maglev train system[D]. Chengdu: Southwest Jiaotong University, 2006.
|
| [16] |
ROBERT H B, JOHN R R. High speed transportation via magnetically suspended vehicles[J]. A Study of the Magnetic Forces, 1971(3): 197-209.
|
| [17] |
POWELL J R, DANBY G R. A 300 mph magnetically suspended trains[J]. Mechanical Engineering, 1966, 89: 30-35.
|
| [18] |
LI Yan-xing. Dynamics of vehicle/track coupled systems in high temperature superconducting maglev vehicle[D]. Chengdu: Southwest Jiaotong University, 2019.
|
| [19] |
WANG Ying, ZHANG Kun-lun, ZHANG Hui-xian, et al. Characteristics and adaptability of different types of high-speed maglev transportation systems[J]. Science and Technology Foresight, 2023, 2(4): 19-30.
|
| [20] |
QIN Xiao-feng. Design and control detent-force-based magnetic suspension system[D]. Jiaozuo: Henan Polytechnic University, 2011.
|
| [21] |
LU Zhi-yuan. Research on dynamic modeling and attitude control of hybrid magnetic levitation vehicle[D]. Beijing: Beijing University of Technology, 2009.
|
| [22] |
TERAI M, IGARASHI M, KUSADA S, et al. The R & D project of HTS magnets for the superconducting maglev[J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 1124-1129. doi: 10.1109/TASC.2006.871342
|
| [23] |
MIZUNO K, SUGINO M, TANAKA M, et al. Experimental production of a real-scale REBCO magnet aimed at its application to maglev[J]. IEEE Transactions on Applied Superconductivity, 2016, DOI: 10.1109/TASC.2016.2645127.
|
| [24] |
LEE H W, KIM K C, LEE J. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925. doi: 10.1109/TMAG.2006.875842
|
| [25] |
BORCHERTS R H, DAVIS L C. Force on a coil moving over a conducting surface including edge and channel effects[J]. Journal of Applied Physics, 1972, 43(5): 2418-2427. doi: 10.1063/1.1661513
|
| [26] |
IWAMOTO M, YAMADA T, OHNO E. Magnetic damping force in electrodynamically suspended trains[J]. IEEE Transactions on Magnetics, 1974, 10(3): 458-461. doi: 10.1109/TMAG.1974.1058446
|
| [27] |
HE J, COFFEY H. Magnetic damping forces in figure-eight-shaped null-flux coil suspension systems[J]. IEEE Transactions on Magnetics, 2002, 33(5): 4230-4232. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=619719
|
| [28] |
WATANABE K, YOSHIOKA H, SUZUKI E, et al. A study of vibration control systems for superconducting maglev vehicles(vibration control of lateral and rolling motions)[J]. Journal of System Design and Dynamics, 2007, 1(3): 593-604. doi: 10.1299/jsdd.1.593
|
| [29] |
HOSHINO H, SUZUKI E, WATANABE K. Reduction of vibrations in maglev vehicles using active primary and secondary suspension control[J]. Quarterly Report of RTRI, 2008, 49(2): 113-118. doi: 10.2219/rtriqr.49.113
|
| [30] |
WERFEL F N, FLOEGEL-DELOR U, ROTHFELD R, et al. Superconductor bearings, flywheels and transportation[J]. Superconductor Science and Technology, 2012, 25(1): 1-16. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=6B797E3FD3AF38853A7747E3E393AC05?doi=10.1.1.475.4664&rep=rep1&type=pdf
|
| [31] |
LIU Wen-xu, LI Wen-long, FANG Jin. Review of research on high temperature maglev[J]. Cryogenics and Superconductivity, 2020, 48(2): 44-49.
|
| [32] |
WU M K, ASHBURN J R, TORNG C J, et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure[J]. Physical Review Letters, 1987, 58(9): 908-910. doi: 10.1103/PhysRevLett.58.908
|
| [33] |
ZHAO Zhong-xian, CHEN Li-quan, YANG Qian-sheng, et al. Superconductivity of Ba-Y-Cu oxide liquid nitrogen temperature zone[J]. Chinese Science Bulletin, 1987(6): 412-414.
|
| [34] |
AWAJI S, WATANABE K, KOBAYASHI N. Crossover from intrinsic to extrinsic pinning for YBa2Cu3O7 films[J]. Cryogenics, 1999, 39(7): 569-577. doi: 10.1016/S0011-2275(99)00079-X
|
| [35] |
SCHULTZ L, DE HAAS O, VERGES P, et al. Superconductively levitated transport system-the SupraTrans project[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2301-2305. doi: 10.1109/TASC.2005.849636
|
| [36] |
OKANO M, IWAMOTO T, FURUSE M, et al. Running performance of a pinning-type superconducting magnetic levitation guide[J]. Journal of Physics: Conference Series, 2006, 43: 999-1002. doi: 10.1088/1742-6596/43/1/244
|
| [37] |
MOTTA E S, DIAS D H N, SOTELO G G, et al. Optimization of a linear superconducting levitation system[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(5): 3548-3554. doi: 10.1109/TASC.2011.2161986
|
| [38] |
LANZARA G, D'OVIDIO G, CRISI F. UAQ4 levitating train: Italian maglev transportation system[J]. IEEE Vehicular Technology Magazine, 2014, 9(4): 71-77. doi: 10.1109/MVT.2014.2362859
|
| [39] |
WANG J S, WANG S Y, ZENG Y W, et al. The first man-loading high temperature superconducting maglev test vehicle in the world[J]. Physica C: Super Conductivity and Its Applications, 2002, 378(1): 809-814. http://www.researchgate.net/profile/He_Jiang2/publication/223443976_The_first_man-loading_high_temperature_superconducting_Maglev_test_vehicle_in_the_world/links/00b7d52c47d01c23d5000000.pdf
|
| [40] |
XIONG Jia-yang, DENG Zi-gang. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177-198.
|
| [41] |
XU Fei, LUO Shi-hui, DENG Zi-gang. Study on key technologies and whole speed range application of maglev rail transport[J]. Journal of the China Railway Society, 2019, 41(3): 40-49. doi: 10.3969/j.issn.1001-8360.2019.03.006
|
| [42] |
BAO Shi-jie. Study on aerodynamic heating characteristics of high-speed maglev train in low-vacuum tube[D]. Chengdu: Southwest Jiaotong University, 2020.
|
| [43] |
ZHANG Yao-ping. Evacuated tube transportation(ETT) —a new opportunity for vacuum industry[J]. Vacuum, 2006(2): 56-59. doi: 10.3969/j.issn.1002-0322.2006.02.016
|
| [44] |
WAN Xiao. The constant speed control of HTS maglev system in evacuated tube[D]. Chengdu: Southwest Jiaotong University, 2014.
|
| [45] |
MICHELE M, PIERRE R. Swissmetro: a revolution in the high-speed passenger transport systems[C]//IEEE. 1st Swiss Transport Research Conference. New York: IEEE, 2001: 1-16.
|
| [46] |
ROBERT M S. Trans-planetary subway systems: a burgeoning capability[J/OL]. Rand Organization, 1978,
|
| [47] |
WU Dan. A comparison between operation control systems for high-speed maglev transportation and for conventional railway[J]. Journal of Transportation Systems Engineering and Information Technology, 2003(4): 79-81, 88. doi: 10.3969/j.issn.1009-6744.2003.04.015
|
| [48] |
TANG You-fu. Research on the development trend and analysis of key problems of Hyperloop[J]. Railway Construction Technology, 2019(4): 1-4. doi: 10.3969/j.issn.1009-4539.2019.04.001
|
| [49] |
LIU Xiao-yan. Comparison between technologies in transrapid maglev and jettrain[J]. Foreign Rolling Stock, 2005(4): 1-5, 12. doi: 10.3969/j.issn.1002-7610.2005.04.001
|
| [50] |
LIN Guo-bin, LIU Wan-ming, XU Jun-qi, et al. Opportunities and challenges for the development of high-speed maglev transportation in China[J]. Science and Technology Foresight, 2023, 2(4): 7-18.
|
| [51] |
SHEN Zhi-yun. Two wrong understanding of high-speed maglev train technology point of view[J]. Journal of Traffic and Transportation Engineering, 2004, 4(1): 1-2. doi: 10.3321/j.issn:1671-1637.2004.01.001
|
| [52] |
The world first high-temperature superconducting high-speed maglev real vehicle verification line is put into use[J]. Western China Communications Science and Technology, 2021(4): 209.
|
| [53] |
KWON H B, PARK Y W, LEE D H, et al. Wind tunnel experiments on Korean high-speed trains using various ground simulation techniques[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(13): 1179-1195. doi: 10.1016/S0167-6105(01)00107-6
|
| [54] |
HU X, DENG Z G, ZHANG J W, et al. Aerodynamic behaviors in supersonic evacuated tube transportation with different train nose lengths[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122-130. http://www.sciencedirect.com/science/article/pii/S0017931021012369?dgcid=rss_sd_all
|
| [55] |
LAN Jian-zhong. Superconducting maglev train reaches record speed in Japan[J]. Urban Mass Transit, 2015, 18(5): 134.
|
| [56] |
TSUGE K. Central Japan Railway Company[EB/OL]. (2016-03-30)[2023-6-16].
|
| [57] |
PALMER C. Engineered to go fast, maglev trains inch forward[J]. Engineering, 2021, 7(7): 891-893. doi: 10.1016/j.eng.2021.06.001
|
| [58] |
MA Guang-tong, YANG Wen-jiao, WANG Zhi-tao, et al. Superconducting maglev transportation research progress[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(7): 68-74.
|
| [59] |
BOSMAJIAN N, MINTO D, HOLLAND L. Status of the magnetic levitation upgrade to the Holloman High Speed Test Track[C]//AIAA. 21st Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2000: 2289.
|
| [60] |
ZHANG Yang, WU Chao. The maglev technology development route[J]. Technology and Market, 2017, 24(6): 101-102, 104. doi: 10.3969/j.issn.1006-8554.2017.06.036
|
| [61] |
YU Zi-liang, REN Kun-hua, XU Wen-tian. Development trend of high speed rail transit[J]. Equipment Manufacturing Technology, 2020(3): 230-232, 240. doi: 10.3969/j.issn.1672-545X.2020.03.063
|
| [62] |
DENG Zi-gang, ZHANG Wei-hua. High temperature superconducting maglev or will cause a revolution in transport[J]. Finance Economy, 2016(11): 42-43.
|
| [63] |
MA K B, POSTREKHIN Y V, CHU W K. Superconductor and magnet levitation devices[J]. Review of Scientific Instrunents, 2003, 74(12): 4989-5017. doi: 10.1063/1.1622973
|
| [64] |
DENG Zi-gang, LI Hai-tao. Recent development of high-temperature superconducting maglev[J]. Materials China, 2017, 36(5): 329-334.
|
| [65] |
XIN Ying, ZHAO Chao-qun. Application of superconducting materials and technologies in rail transportation[J]. Advanced Materials Industry, 2017(2): 9-16. doi: 10.3969/j.issn.1008-892X.2017.02.004
|
| [66] |
WANG Jia-su, WANG Su-yu. High temperature superconducting maglev train[J]. Journal of Electrical Engineering, 2015, 10(11): 1-10. doi: 10.11985/2015.11.001
|
| [67] |
SU Jing-qi. Research on air resistance impact on energy saving of railway vehicles and Hyperloop capsules[J]. Modern Urban Transit, 2019(12): 104-107.
|
| [68] |
WEI Li-bing. Research on linear active disturbance rejection control algorithm for magnetic levitation ball system[D]. Ganzhou: Jiangxi University of Science and Technology, 2023.
|
| [69] |
SHEN Tong, MA Zhi-wen, DU Xiao-jie, et al. Development status and trend analysis of high speed maglev railways worldwide[J]. China Railway, 2020(11): 94-99. doi: 10.3969/j.issn.1007-9971.2020.11.010
|
| [70] |
VUCHIC V R, CASELLO J M. An evaluation of maglev technology and its comparison with high speed rail[J]. Transportation Quarterly, 2002, 56(2): 33-49.
|
| [71] |
LIN Guo-bin, SHENG Xiong-wei. Application and further development of maglev transportation in China[J]. Transportation Systems and Technology, 2018, 4(3): 36-43. doi: 10.17816/transsyst20184336-43
|
| [72] |
SUN Yu-ling, QIN A-ning, DONG Lu. Research on development and prospects of maglev transportation and suggestions to China[J]. World Sci-Tech R & D, 2019, 41(2): 109-119.
|
| [73] |
WU Chao-hua, LI Si-ji. Experience and enlightenment of Japan's maglev line planning and construction[J]. Traffic and Transportation, 2023, 39(3): 25-29. doi: 10.3969/j.issn.1671-3400.2023.03.006
|
| [74] |
XIONG Jia-yang, SHEN Zhi-yun. Rise and future development of Chinese high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 6-29. doi: 10.19818/j.cnki.1671-1637.2021.05.002
|
| [75] |
DENG Zi-gang, LIU Zong-xin, LI Hai-tao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474, 530.
|
| [76] |
YE Chang-qing. Intelligent optimization algorithm for high temperature superconducting levitation and its applications[D]. Chengdu: Southwest Jiaotong University, 2016.
|
| [77] |
LI J P, ZHENG J, HUANG H, et al. Motion stability of the magnetic levitation and suspension with YBa2Cu3O7-x high-Tc superconducting bulks and NdFeB magnets[J]. Journal of Applied Physics, 2017, 122(15): 1-8.
|
| [78] |
LI J P, LI H T, ZHENG J, et al. Nonlinear vibration behaviors of high-Tc superconducting bulks in an applied permanent magnetic array field[J]. Journal of Applied Physics, 2017, 121(24): 1-6.
|
| [79] |
JIN L W, ZHENG J, LI H T, et al. Effect of eddy current damper on the dynamic vibration characteristics of high-temperature superconducting maglev system[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(3): 1-6.
|
| [80] |
LI H T, DENG Z G, JIN L, et al. Lateral motion stability of high-temperature superconducting maglev systems derived from a nonlinear guidance force hysteretic model[J]. Superconductor Science and Technology, 2018, 31(7): 1-8.
|
| [81] |
HUANG H, ZHENG J, LIAO H P, et al. Effect laws of different factors on levitation characteristics of high-Tc superconducting maglev system with numerical solutions[J]. Journal of Superconductivity and Novel Magnetism, 2019, 32(8): 2351-2358. doi: 10.1007/s10948-018-4985-0
|
| [82] |
WANG H D, DENG Z G, MA S S, et al. Dynamic simulation of the HTS maglev vehicle-bridge coupled system based on levitation force experiment[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 1-6.
|
| [83] |
LI J P, DENG Z G, XIA C C, et al. Subharmonic resonance in magnetic levitation of the high temperature superconducting bulks YBa2Cu3O7-x under harmonic excitation[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(4): 1-8.
|
| [84] |
DENG Z G, LI J P, WANG H D, et al. Dynamic simulation of the vehicle/bridge coupled system in high-temperature superconducting maglev[J]. Computing in Science and Engineering, 2019, 21(3): 60-71. doi: 10.1109/MCSE.2019.2902452
|
| [85] |
LI H T, LIU D, HONG Y, et al. Modeling and identification of the hysteresis nonlinear levitation force in HTS maglev systems[J]. Superconductor Science and Technology, 2020, 33(5): 054001. doi: 10.1088/1361-6668/ab7845
|
| [86] |
LI H T, HUANG H, YU J B, et al. Nonlinear vibration suppression of HTS maglev utilizing electromagnetic shunt damper[C]//IEEE. 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices. New York: IEEE, 2020: 1-2.
|
| [87] |
CHEN Zhi-xian, CHI Mao-ru, WU Xing-wen, et al. Analysis of dynamic characteristics of high temperature superconducting maglev vehicle in curve passing[J]. Electric Drive for Locomotives, 2020(4): 70-75.
|
| [88] |
LI Y J, DAI Q, ZHANG Y, et al. Design and analysis of an electromagnetic turnout for the superconducting maglev system[J]. Physica C: Superconductivity and Its Applications, 2016, 528: 84-89. doi: 10.1016/j.physc.2016.07.021
|
| [89] |
ZHENG J, SUN R X, LI H T, et al. A manned hybrid maglev vehicle applying permanent magnetic levitation (PML) and superconducting magnetic levitation (SML)[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(1): 1-7.
|
| [90] |
DENG Z G, ZHANG W F, CHEN Y, et al. Optimization study of the halbach permanent magnetic guideway for high temperature superconducting magnetic levitation[J]. Superconductor Science and Technology, 2020, 33(3): 1-11.
|
| [91] |
FAN Jun-huai, HUANG Qiang. Analysis of traffic transfer and safety environment for vacuum tube ultra-high speed maglev[J]. Railway Transport and Economy, 2021, 43(2): 125-130.
|
| [92] |
The Science and Technology Institute of Public Opinion Analysis. Super high-speed rail: or will break through 4 000 kilometers per hour[J]. Science and Technology Today, 2021(3): 41-43.
|
| [93] |
LIANG Jian-ying. Development status and future prospects of the high-speed maglev transportation system in China[J]. Science, 2022, 74(5): 31-36, 2, 69.
|
| [94] |
GAO Jing. When will the commercialization era of high-speed maglev arrive?[J]. Popular Tribune, 2020(9): 34-36.
|
| [95] |
YU Qing-song, LI Kai, HU Hao, et al. Research and technological prospects of applications for superconducting electrodynamic suspension[J]. Electric Drive for Locomotives, 2023(4): 1-8.
|
| [96] |
XIONG Jia-yang, SHEN Zhi-yun. High-speed railway in China would continuously retain world-leading position in engineering[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 711-719.
|
| [97] |
ZHANG Yun-jiao, WANG Xiu-hua, HUANG Cheng-ming, et al. Research on the evaluation system of ultra-high speed pipeline maglev system demonstration line[J]. Railway Standard Design, 2023, 67(12): 1-6, 14.
|