| Citation: | SUN You-gang, HUANG Zhi-chuang, LIN Guo-bin, XU Jun-qi, JI Wen. Fault-tolerant control for levitation systems of high-speed maglev train based on diversified basis neural networks[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 61-74. doi: 10.19818/j.cnki.1671-1637.2025.02.004 |
| [1] |
LIN Guo-bin, LIU Wan-ming, XU Jun-qi, et al. Opportunities and challenges for the development of high-speed maglev transportation in China[J]. Science and Technology Foresight, 2023, 2(4): 7-18.
|
| [2] |
DING San-san, FU Shan-qiang, LIANG Xin. Engineering practice and prospect of high-speed maglev transportation in China[J]. Science and Technology Foresight, 2023, 2(4): 40-48.
|
| [3] |
XIONG Jia-yang, DENG Zi-gang. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177-198. doi: 10.19818/j.cnki.1671-1637.2021.01.008
|
| [4] |
MA Wei-hua, LUO Shi-hui, ZHANG Min, et al. Research review on medium and low speed maglev vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 199-216. doi: 10.19818/j.cnki.1671-1637.2021.01.009
|
| [5] |
LI F X, SUN Y G, XU J Q, et al. Control methods for levitation system of EMS-type maglev vehicles: an overview[J]. Energies, 2023, 16(7): 2995. doi: 10.3390/en16072995
|
| [6] |
LIU Heng-kun, HAO A-ming, CHANG Wen-sen. Nonlinear PID control of magnetic suspension systems[J]. Control Engineering of China, 2007, 14(6): 653-656. doi: 10.3969/j.issn.1671-7848.2007.06.027
|
| [7] |
SUN Y G, QIANG H Y, WANG L, et al. A fuzzy-logic-system-based cooperative control for the multielectromagnets suspension system of maglev trains with experimental verification[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(10): 3411-3422. doi: 10.1109/TFUZZ.2023.3257036
|
| [8] |
SUN Y G, XU J Q, QIANG H Y, et al. Adaptive sliding mode control of maglev system based on RBF neural network minimum parameter learning method[J]. Measurement, 2019, 141: 217-226. doi: 10.1016/j.measurement.2019.03.006
|
| [9] |
ZHONG Zhi-xian, CAI Zhong-hou, QI Yan-ying. Model-free adaptive control for single-degree-of-freedom magnetically levitated system[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 549-557, 581.
|
| [10] |
LENG P, YU P C, GAO M, et al. Optimal control scheme of maglev train based on the disturbance observer[C]//IEEE. 2019 Chinese Control Conference. New York: IEEE, 2019: 1935-1940.
|
| [11] |
SUN Y G, HE Z Y, XU J Q, et al. Cooperative model predictive levitation control for two-points electromagnetic levitation system of high-speed maglev vehicle[J]. IEEE Transactions on Intelligent Vehicles, 2023, DOI: 10.1109/TIV.2023.3329073.
|
| [12] |
DEY S, BANERJEE S, DEY J. Frequency-domain tuning of a robust optimal 2-DOF fractional order PID controller for a maglev system[J]. IEEE Transactions on Industrial Informatics, 2024, 20(9): 11348-11361. doi: 10.1109/TII.2024.3403249
|
| [13] |
KANG J S, HUANG X Y, XIA C, et al. Ultra-local model-free adaptive super-twisting nonsingular terminal sliding mode control for magnetic levitation system[J]. IEEE Transactions on Industrial Electronics, 2024, 71(5): 5187-5194. doi: 10.1109/TIE.2023.3285925
|
| [14] |
JIN L, LONG Z Q, ZENG J W. Research on fault-tolerant control problem for suspension system of medium speed maglev train[C]//IEEE. 29th Chinese Control and Decision Conference (CCDC). New York: IEEE, 2017: 2993-2998.
|
| [15] |
MICHAIL K, ZOLOTAS A C, GOODALL R M. Optimised sensor selection for control and fault tolerance of electromagnetic suspension systems: a robust loop shaping approach[J]. ISA Transactions, 2014, 53(1): 97-109. doi: 10.1016/j.isatra.2013.08.006
|
| [16] |
YETENDJE A, SERON M M, DE DONÁ J A, et al. Sensor fault-tolerant control of a magnetic levitation system[J]. International Journal of Robust and Nonlinear Control, 2010, 20(18): 2108-2121. doi: 10.1002/rnc.1572
|
| [17] |
LONG Zhi-qiang, ZHAI Ming-da, WANG Zhi-qiang, et al. Condition monitoring, fault diagnosis and fault-tolerant control of the maglev train[M]. Shanghai: Shanghai Scientific and Technical Publishers, 2023.
|
| [18] |
AMIN A A, HASAN K M. A review of fault tolerant control systems: advancements and applications[J]. Measurement, 2019, 143: 58-68. doi: 10.1016/j.measurement.2019.04.083
|
| [19] |
JI W, LYU D Y, LUO S H, et al. Multiple models-based fault tolerant control of levitation module of maglev vehicles against partial actuator failures[J]. IEEE Transactions on Vehicular Technology, 2025, 74(2): 2231-2240. doi: 10.1109/TVT.2024.3399235
|
| [20] |
ZHAI M D, LONG Z Q, LI X L. Fault-tolerant control of magnetic levitation system based on state observer in high speed maglev train[J]. IEEE Access, 2019, 7: 31624-31633. doi: 10.1109/ACCESS.2019.2898108
|
| [21] |
SUN Y G, LI F X, LIN G B, et al. Adaptive fault-tolerant control of high-speed maglev train suspension system with partial actuator failure: design and experiments[J]. Journal of Zhejiang University-SCIENCE A, 2023, 24(3): 272-283. doi: 10.1631/jzus.A2200189
|
| [22] |
SONG Y D, HE L, ZHANG D, et al. Neuroadaptive fault-tolerant control of quadrotor UAVs: a more affordable solution[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(7): 1975-1983. doi: 10.1109/TNNLS.2018.2876130
|
| [23] |
ZHAO K, SONG Y D, SHEN Z X. Neuroadaptive fault-tolerant control of nonlinear systems under output constraints and actuation faults[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(2): 286-298. doi: 10.1109/TNNLS.2016.2619914
|
| [24] |
CHENG H, HUANG X C, LI Z Q. Unified neuroadaptive fault-tolerant control of fractional-order systems with or without state constraints[J]. Neurocomputing, 2023, 524: 117-125. doi: 10.1016/j.neucom.2022.12.035
|
| [25] |
SUN Y G, XU J Q, LIN G B, et al. RBF neural network-based supervisor control for maglev vehicles on an elastic track with network time delay[J]. IEEE Transactions on Industrial Informatics, 2022, 18(1): 509-519. doi: 10.1109/TII.2020.3032235
|
| [26] |
LIU L, LIU Y J, TONG S C. Neural networks-based adaptive finite-time fault-tolerant control for a class of strict-feedback switched nonlinear systems[J]. IEEE Transactions on Cybernetics, 2019, 49(7): 2536-2545. doi: 10.1109/TCYB.2018.2828308
|
| [27] |
PARK J, SANDBERG I W. Universal approximation using radial-basis-function networks[J]. Neural Computation, 1991, 3(2): 246-257. doi: 10.1162/neco.1991.3.2.246
|
| [28] |
ZHANG S Z, LIU Q, WU X B, et al. A self-adaptive and multiple activation function neural network for facial expression recognition[C]//ACM. 2021 5th International Conference on Electronic Information Technology and Computer Engineering. New York: ACM, 2021: 1106-1111.
|
| [29] |
SONG Y D, HUANG X C, JIA Z J. Dealing with the issues crucially related to the functionality and reliability of NN-associated control for nonlinear uncertain systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(11): 2614-2625. doi: 10.1109/TNNLS.2016.2598616
|
| [30] |
GAO Z, YU W, YAN J. Neuroadaptive fault-tolerant control embedded with diversified activating functions with application to auto-driving vehicles under fading actuation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(5): 6255-6264. doi: 10.1109/TNNLS.2023.3248100
|
| [31] |
GE S S, HANG C C, ZHANG T. A direct method for robust adaptive nonlinear control with guaranteed transient performance[J]. Systems and Control Letters, 1999, 37(5): 275-284. doi: 10.1016/S0167-6911(99)00032-8
|
| [32] |
LONG Z W, SHI G H, WANG L C. Suspension influence analysis of track irregularity of maglev train[C]//IEEE. 2010 Chinese Control and Decision Conference. New York: IEEE, 2010: 942-947.
|