| Citation: | SHI Xin, HU Xin-qian, ZHAO Xiang-mo, MA Jun-yan, WANG Jian. Adaptive graph spatio-temporal synchronization for traffic flow prediction based on NODEs[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 170-188. doi: 10.19818/j.cnki.1671-1637.2025.02.011 |
| [1] |
TEDJOPURNOMO D A, BAO Z F, ZHENG B H, et al. A survey on modern deep neural network for traffic prediction: trends, methods and challenges[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(4): 1544-1561. http://www.keyanzhidian.com/doc/detail?id=2067034755
|
| [2] |
YAO Jun-feng, HE Rui, SHI Tong-tong, et al. Review on machine learning-based traffic flow prediction methods[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 44-67. doi: 10.19818/j.cnki.1671-1637.2023.03.003
|
| [3] |
SHI X M, QI H, SHEN Y M, et al. A spatial-temporal attention approach for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(8): 4909-4918. http://www.xueshufan.com/publication/3015712039
|
| [4] |
GUO K, HU Y L, QIAN Z, et al. Optimized graph convolution recurrent neural network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(2): 1138-1149. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8959420
|
| [5] |
KUMAR S V, VANAJAKSHI L. Short-term traffic flow prediction using seasonal ARIMA model with limited input data[J]. European Transport Research Review, 2015, 7(3): 1-9. http://www.onacademic.com/detail/journal_1000038119292110_dd14.html
|
| [6] |
CHEN C Y, HU J M, MENG Q, et al. Short-time traffic flow prediction with ARIMA-GARCH model[C]// IEEE. 2011 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2011: 607-612.
|
| [7] |
ZIVOT E, WANG J H. Modeling Financial Time Series with S-PLUS[M]. New York: Springer, 2006.
|
| [8] |
ZHANG L, LIU Q C, YANG W C, et al. An improved K-nearest neighbor model for short-term traffic flow prediction[J]. Procedia-Social and Behavioral Sciences, 2013, 96: 653-662. http://core.ac.uk/download/pdf/82079242.pdf
|
| [9] |
FENG X X, LING X Y, ZHENG H F, et al. Adaptive multi-kernel SVM with spatial-temporal correlation for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(6): 2001-2013. http://www.onacademic.com/detail/journal_1000040874769110_8054.html
|
| [10] |
BOUKERCHE A, WANG J H. Machine learning-based traffic prediction models for intelligent transportation systems[J]. Computer Networks, 2020, 181: 1389-1286.
|
| [11] |
ZHANG W B, YU Y H, QI Y, et al. Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning[J]. Transportmetrica A: Transport Science, 2019, 15(2): 1688-1711.
|
| [12] |
RAMAKRISHNAN N, SONI T. Network traffic prediction using recurrent neural networks[C]//IEEE. 2018 the 17th IEEE International Conference on Machine Learning and Applications. New York: IEEE, 2018: 187-193.
|
| [13] |
MA X L, TAO Z M, WANG Y H, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 187-197. http://www.researchgate.net/profile/Xiaolei_Ma2/publication/274736791_Long_short-term_memory_neural_network_for_traffic_speed_prediction_using_remote_microwave_sensor_data/links/5588c86608aeb2994444aaf9.pdf
|
| [14] |
ZHAO Z, CHEN W H, WU X M, et al. LSTM network: a deep learning approach for short-term traffic forecast[J]. IET Intelligent Transport Systems, 2017, 11(2): 68-75. http://www.keyanzhidian.com/doc/detail?id=2032310304
|
| [15] |
FU R, ZHANG Z, LI L. Using LSTM and GRU neural network methods for traffic flow prediction[C]//IEEE. 2016 the 31st Youth Academic Annual Conference of Chinese Association of Automation. New York: IEEE, 2016: 324-328.
|
| [16] |
MA X L, DAI Z, HE Z B, et al. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4): 818-827. http://www.xueshufan.com/publication/2579495707
|
| [17] |
LIU Y P, ZHENG H F, FENG X X, et al. Short-term traffic flow prediction with Conv-LSTM[C]//IEEE. 2017 the 9th International Conference on Wireless Communications and Signal Processing. New York: IEEE, 2017: 1-6.
|
| [18] |
CUI Z Y, HENRICKSON K, KE R M, et al. Traffic graph convolutional recurrent neural network: a deep learning framework for network-scale traffic learning and forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(11): 4883-4894.
|
| [19] |
MEDINA B, SÁNCHEZ E, POZOS P, et al. Urban traffic flow prediction techniques: a review[J]. Sustainable Computing: Informatics and Systems, 2022, 35: 2210-5379. http://www.sciencedirect.com/science/article/pii/S2210537922000725
|
| [20] |
HU Zuo-an, DENG Jin-cheng, HAN Jin-li, et al. Review on application of graph neural network in traffic prediction[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 39-61. doi: 10.19818/j.cnki.1671-1637.2023.05.003
|
| [21] |
LI Y G, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[J]. ArXiv Preprint, 2018, DOI:
|
| [22] |
YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//ACM. Proceedings of the 21th International Joint Conference on Artificial Intelligence. New York: ACM, 2018: 3634-3640.
|
| [23] |
ZHAO L, SONG Y J, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(9): 3848-3858.
|
| [24] |
WU Z H, PAN S R, LONG G D, et al. Graph wavenet for deep spatial-temporal graph modeling[J]. ArXiv Preprint, 2019, DOI: 10.24963/ijcai.2019/264.
|
| [25] |
GUO S N, LIN Y F, WAN H Y, et al. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 34(11): 5415-5428. http://www.keyanzhidian.com/doc/detail?id=2069830564
|
| [26] |
WANG X, ZHU M Q, BO D Y, et al. AM-GCN: adaptive multi-channel graph convolutional networks[C]//ACM. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1243-1253.
|
| [27] |
QU Xu, GAN Rui, AN Bo-cheng, et al. Prediction of traffic swarm movement situation based on generalized spatio-temporal graph convolution network[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 79-88. doi: 10.19818/j.cnki.1671-1637.2022.03.006
|
| [28] |
FANG Z, LONG Q Q, SONG G J, et al. Spatial-temporal graph ode networks for traffic flow forecasting[C]// ACM. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 364-373.
|
| [29] |
CUI Jian-xun, YAO Jia, ZHAO Bo-yuan. Review on short-term traffic flow prediction methods based on deep learning[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 50-64. doi: 10.19818/j.cnki.1671-1637.2024.02.003
|
| [30] |
WU Y K, TAN H C, QIN L Q, et al. A hybrid deep learning based traffic flow prediction method and its understanding[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 166-180. http://smartsearch.nstl.gov.cn/paper_detail.html?id=d7a038c4f0d3776bcead726010596c60
|
| [31] |
AL-NAYMAT G, CHAWLA S, TAHERI J. Sparse DTW: a novel approach to speed up dynamic time warping[J]. ArXiv Preprint, 2012, DOI:
|
| [32] |
LI M Z, ZHU Z X. Spatial-temporal fusion graph neural networks for traffic flow forecasting[C]//AAAI. Proceedings of the 35th AAAI Conference on Artificial Intelligence. New York: AAAI, 2021: 4189-4196.
|
| [33] |
JIN M, ZHENG Y, LI Y F, et al. Multivariate time series forecasting with dynamic graph neural odes[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(9): 9168-9180.
|
| [34] |
BUI K N, CHO J, YI H. Spatial-temporal graph neural network for traffic forecasting: an overview and open research issues[J]. Applied Intelligence, 2022, 52(3): 2763-2774. doi: 10.1007/s10489-021-02587-w?utm_content=meta
|
| [35] |
GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//AAAI. Proceedings of the 33rd AAAI Conference on Artificial Intelligence. New York: AAAI, 2019: 922-929.
|
| [36] |
SONG C, LIN Y F, GUO S N, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[C]// AAAI. Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 914-921.
|
| [37] |
VINAYAKUMAR R, SOMAN K P, POORNACHANDRAN P. Applying deep learning approaches for network traffic prediction[C]//IEEE. 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). New York: IEEE, 2017: 2353-2358.
|
| [38] |
TAGGAR R J. Point forecasting and forecast evaluation with generalized Huber loss[J]. Electronic Journal of Statistics, 2022, 16(1): 201-231. http://arxiv.org/pdf/2108.12426
|