| Citation: | LIU Han-you, FAN Ai-long, XIA Min-jie, LI Tao-tao, WANG Xin-wei, GUAN Cong, YANG Fu-bao. Experimental validation of power distribution control and energy management strategies for hydrogen-electric hybrid power ship[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 221-237. doi: 10.19818/j.cnki.1671-1637.2025.04.016 |
| [1] |
BAO Tian-tian, LIAN Feng, YANG Zhong-zhen. Research review of shipping management[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 55-69. doi: 10.19818/j.cnki.1671-1637.2020.04.004
|
| [2] |
HE Y P, FAN A L, WANG Z, et al. Two-phase energy efficiency optimisation for ships using parallel hybrid electric propulsion system[J]. Ocean Engineering, 2021, 238: 109733. doi: 10.1016/j.oceaneng.2021.109733
|
| [3] |
LONG Hao-nan, LIU Gui-ling, TANG Wen-jun. Design points of hydrogen fuel power supply system for" San Xia Qing Zhou 1"[J]. Transport Energy Conservation & Environmental Protection, 2023, 19(4): 14-18.
|
| [4] |
WANG Dong-xing, WANG Zhe, ZHAO Fan, et al. State-of-the-art and prospect of technical standards for the ships powered by hydrogen fuel cells[J]. Journal of Transport Information and Safety, 2023, 41(2): 157-167, 178.
|
| [5] |
YUAN Yu-peng, XU Chao-yuan, LI Na, et al. Review on multi-energy integration systems in ports[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 83-103. doi: 10.19818/j.cnki.1671-1637.2024.04.007
|
| [6] |
FAN Ai-long, LI Yong-ping, YANG Qiang, et al. A study of energy management predictive control of ship hybrid power system[J]. Journal of Harbin Engineering University, 2024, 45(1): 162-173.
|
| [7] |
REZAEI H, ABDOLLAHI S E, ABDOLLAHI S, et al. Energy management strategies of battery-ultracapacitor hybrid sto-rage systems for electric vehicles: review, challenges, and future trends[J]. Journal of Energy Storage, 2022, 53: 105045. doi: 10.1016/j.est.2022.105045
|
| [8] |
ZHAO Z H. Improved fuzzy logic control-based energy mana-gement strategy for hybrid power system of FC/PV/battery/SC on tourist ship[J]. International Journal of Hydrogen En-ergy, 2022, 47(16): 9719-9734. doi: 10.1016/j.ijhydene.2022.01.040
|
| [9] |
GE Y Q, ZHANG J D, ZHOU K X, et al. Research on energy management for ship hybrid power system based on adaptive equivalent consumption minimization strategy[J]. Journal of Marine Science and Engineering, 2023, 11(7): 1271. doi: 10.3390/jmse11071271
|
| [10] |
ZHANG L, LIAO R J, WEI X D, et al. PMP method with a cooperative optimization algorithm considering speed planning and energy management for fuel cell vehicles[J]. Interna-tional Journal of Hydrogen Energy, 2024, 79: 434-447. doi: 10.1016/j.ijhydene.2024.06.297
|
| [11] |
LIU H Y, FAN A L, LI Y P, et al. Hierarchical distributed MPC method for hybrid energy management: a case study of ship with variable operating conditions[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113894. doi: 10.1016/j.rser.2023.113894
|
| [12] |
FAN A L, YAN J H, XIONG Y Q, et al. Characteristics of real-world ship energy consumption and emissions based on onboard testing[J]. Marine Pollution Bulletin, 2023, 194: 115411. doi: 10.1016/j.marpolbul.2023.115411
|
| [13] |
JUNG W, CHANG D. Deep reinforcement learning-based energy management for liquid hydrogen-fueled hybrid electric ship propulsion system[J]. Journal of Marine Science and En-gineering, 2023, 11(10): 2007. doi: 10.3390/jmse11102007
|
| [14] |
FAN A L, LI Y P, LIU H Y, et al. Development trend and hotspot analysis of ship energy management[J]. Journal of Cleaner Production, 2023, 389: 135899. doi: 10.1016/j.jclepro.2023.135899
|
| [15] |
LIU H Y, FAN A L, LI Y P, et al. Testing methods for multi-energy ship energy management system: a systematic review[J]. Ocean Engineering, 2024, 304: 117889. doi: 10.1016/j.oceaneng.2024.117889
|
| [16] |
WANG Z, CHEN L, WANG B, et al. Integrated optimiza-tion of speed schedule and energy management for a hybrid electric cruise ship considering environmental factors[J]. En-ergy, 2023, 282: 128795.
|
| [17] |
CHEN L, GAO D J, XUE Q M. Energy management stra-tegy for hybrid power ships based on nonlinear model pre-dictive control[J]. International Journal of Electrical Po-wer & Energy Systems, 2023, 153: 109319.
|
| [18] |
LUO Y B, KONG L Q, FANG S D, et al. Reviews on the power management for shipboard energy storage systems[J]. Sustainable Horizons, 2024, 9: 100094. doi: 10.1016/j.horiz.2024.100094
|
| [19] |
NIVOLIANITI E, KARNAVAS Y L, CHARPENTIER J F. Energy management of shipboard microgrids integrating en-ergy storage systems: a review[J]. Renewable and Sustain-able Energy Reviews, 2024, 189: 114012. doi: 10.1016/j.rser.2023.114012
|
| [20] |
LI J Y, CHANG Y J, XU L B, et al. A data-driven LSTM-based management and control approach for fatigue life of subsea wellhead system[J]. Ocean Engineering, 2024, 313: 119335. doi: 10.1016/j.oceaneng.2024.119335
|
| [21] |
ANTONOPOULOS S, VISSER K, KALIKATZARAKIS M, et al. MPC framework for the energy management of hybrid ships with an energy storage system[J]. Journal of Marine Science and Engineering, 2021, 9(9): 993. doi: 10.3390/jmse9090993
|
| [22] |
VIZENTIN G, VUKELIC G, MURAWSKI L, et al. Marine propulsion system failures-a review[J]. Journal of Marine Science and Engineering, 2020, 8(9): 662. doi: 10.3390/jmse8090662
|
| [23] |
LATORRE A, SOEIRO T B, GEERTSMA R, et al. Ship-board DC systems-a critical overview: challenges in pri-mary distribution, power-electronics-based protection, and power scalability[J]. IEEE Open Journal of the Industrial Electronics Society, 2023, 4: 259-286. doi: 10.1109/OJIES.2023.3294999
|
| [24] |
WANG Z, DONG B, LI MY, et al. Configuration of low-carbon fuels green marine power systems in diverse ship types and applications[J]. Energy Conversion and Management, 2024, 302: 118139. doi: 10.1016/j.enconman.2024.118139
|
| [25] |
GHIMIRE P, ZADEH M, PEDERSEN E, et al. Dynamic modeling, simulation, and testing of a marine DC hybrid power system[J]. IEEE Transactions on Transportation Electrification, 2021, 7(2): 905-919. doi: 10.1109/TTE.2020.3023896
|
| [26] |
DARAZ A. Optimized cascaded controller for frequency sta-bilization of marine microgrid system[J]. Applied Energy, 2023, 350: 121774. doi: 10.1016/j.apenergy.2023.121774
|
| [27] |
COELHO A, IRIA J, SOARES F, et al. Real-time manage-ment of distributed multi-energy resources in multi-energy networks[J]. Sustainable Energy, Grids and Networks, 2023, 34: 101022. doi: 10.1016/j.segan.2023.101022
|
| [28] |
CHEN W J, TAI K, LAU M W S, et al. Optimal power and energy management control for hybrid fuel cell-fed shipboard dc microgrid[J]. IEEE Transactions on Intelligent Transpor-tation Systems, 2023, 24(12): 14133-14150. doi: 10.1109/TITS.2023.3303886
|
| [29] |
MYLONOPOULOS F, POLINDER H, CORADDU A. A comprehensive review of modeling and optimization methods for ship energy systems[J]. IEEE Access, 2023, 11: 32697-32707. doi: 10.1109/ACCESS.2023.3263719
|
| [30] |
PLANAKIS N, PAPALAMBROU G, KYRTATOS N. Ship energy management system development and experimental evaluation utilizing marine loading cycles based on machine learning techniques[J]. Applied Energy, 2022, 307: 118085. doi: 10.1016/j.apenergy.2021.118085
|
| [31] |
FAN Ai-long, LIU Han-you, YANG Fu-bao, et al. Hard-ware-in-the-loop simulation platform and experimental study of ship hybrid power system[J]. Shipbuilding of China, 2023, 64(3): 262-274.
|
| [32] |
SHAKERI N, ZADEH M, BREMNES NIELSEN J. Hydro-gen fuel cells for ship electric propulsion: moving toward greener ships[J]. IEEE Electrification Magazine, 2020, 8(2): 27-43. doi: 10.1109/MELE.2020.2985484
|
| [33] |
PAN P C, SUN Y W, YUAN C Q, et al. Research progress on ship power systems integrated with new energy sources: a review[J]. Renewable & Sustainable Energy Reviews, 2021, 144.
|