| Citation: | GAO Da-wei, LI Cheng, SHI Gui-jie. Review on structural mechanics performance of MARK Ⅲ cargo containment system for LNG carrier[J]. Journal of Traffic and Transportation Engineering, 2026, 26(1): 132-157. doi: 10.19818/j.cnki.1671-1637.2026.056 |
| [1] |
DEN ELZEN M, FEKETE H, HÖHNE N, et al. Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030?[J]. Energy Policy, 2016, 89: 224-236. doi: 10.1016/j.enpol.2015.11.030
|
| [2] |
IEA. Energy and air pollution special report: The environmental case for natural gas[R]. Paris: International Energy Agency, 2016.
|
| [3] |
YIN Y W, LAM J S L. Bottlenecks of LNG supply chain in energy transition: A case study of China using system dynamics simulation[J]. Energy, 2022, 250: 123803. doi: 10.1016/j.energy.2022.123803
|
| [4] |
Oxford Energy. What drives international gas prices in competitive markets? Four fallacies and a hypothesis[R]. Oxford: Oxford Institute for Energy Studies, 2024.
|
| [5] |
YAN Z J, YANG G H, HE R, et al. "Ship-port-country" multi-dimensional research on the fine analysis of China's LNG trade[J]. Journal of Transport Geography, 2023, 110: 103619. doi: 10.1016/j.jtrangeo.2023.103619
|
| [6] |
HYEON S K, MIN S C, JAE M L, et al. A comparative evaluation of fatigue and fracture characteristics of structural components of liquefied natural gas carrier insulation system[J]. Journal of Pressure Vessel Technology, 2013, 135(2): 021405. doi: 10.1115/1.4007473
|
| [7] |
FERNÁNDEZ I A, GÓMEZ M R, GÓMEZ J R, et al. Review of propulsion systems on LNG carriers[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 1395-1411. doi: 10.1016/j.rser.2016.09.095
|
| [8] |
YIN L, JU Y L. Review on the design and optimization of BOG re-liquefaction process in LNG ship[J]. Energy, 2022, 244: 123065. doi: 10.1016/j.energy.2021.123065
|
| [9] |
LI T T, HE X, GAO P. Analysis of offshore LNG storage and transportation technologies based on patent informatics[J]. Cleaner Engineering and Technology, 2021, 5: 100317. doi: 10.1016/j.clet.2021.100317
|
| [10] |
MURMU S B. Alternatives derived from renewable natural fibre to replace conventional polyurethane rigid foam insulation[J]. Cleaner Engineering and Technology, 2022, 8: 100513. doi: 10.1016/j.clet.2022.100513
|
| [11] |
DIAS F, GHIDAGLIA J M. Slamming: Recent progress in the evaluation of impact pressures[J]. Annual Review of Fluid Mechanics, 2018, 50: 243-273. doi: 10.1146/annurev-fluid-010816-060121
|
| [12] |
MALENICA S, DIEBOLD L, KWON S H, et al. Sloshing assessment of the LNG floating units with membrane type containment system where we are?[J]. Marine Structures, 2017, 56: 99-116. doi: 10.1016/j.marstruc.2017.07.004
|
| [13] |
LIU L S, GUO T, ZHOU Y Y, et al. Review of the design and optimization of BOG re-liquefaction process for LNG carriers[J]. Cryogenics, 2024, 142: 103924. doi: 10.1016/j.cryogenics.2024.103924
|
| [14] |
CUI Lian-de. Evolution history of GTT membrane cargo containment system[J]. China Ship Survey, 2022, (4): 85-88.
|
| [15] |
LOU Dan-ping, YANG Chun-hua. Technology development trends of LNG carrier[J]. Ship & Boat, 2023, 34(4): 19-27.
|
| [16] |
FENG Ming, LIU Yan-nian. Status and development trend of LNG tank containment system[J]. Marine Electric & Electronic Engineering, 2021, 41(12): 25-30.
|
| [17] |
LIU Bi-tao, CAO Lin, WANG Jiang-chao, et al. Construction processing and key technology of containment system of liquid cargo tank of LNG carrier[J]. Ship Engineering, 2023, 45(8): 127-134, 181.
|
| [18] |
CHEN Zhen-kuan, HE Jian-ping, LI Fang, et al. Study of corrugated membranes welding for MARK Ⅲ liquid cargo containment[J]. Naval Architecture and Ocean Engineering, 2023, 39(5): 1-7.
|
| [19] |
Gaztransport Technigaz. Vessels & land storages on order[R]. Saint-Remy-les-Chevreuse: Gaztransport Technigaz, 2024.
|
| [20] |
LEE C S, LEE J M. Failure analysis of reinforced polyurethane foam-based LNG insulation structure using damage-coupled finite element analysis[J]. Composite Structures, 2014, 107: 231-245. doi: 10.1016/j.compstruct.2013.07.044
|
| [21] |
KIM M H, KIL Y P, LEE J M, et al. Cryogenic fatigue strength assessment for MARK Ⅲ insulation system of LNG carriers[J]. Journal of Offshore Mechanics and Arctic Engineering, 2011, 133(4): 041401. doi: 10.1115/1.4003389
|
| [22] |
BAE J H, HWANG B K, KIM S K, et al. Statistical estimation of extreme sloshing impact pressure and its validation based on dynamic behavior of insulation materials[J]. Functional Composites and Structures, 2020, 2(1): 015001. doi: 10.1088/2631-6331/ab628c
|
| [23] |
KIM M S, KWON S B, KIM S K, et al. Impact failure analysis of corrugated steel plate in LNG containment cargo system[J]. Journal of Constructional Steel Research, 2019, 156: 287-301. doi: 10.1016/j.jcsr.2019.02.008
|
| [24] |
CHA S J, KIM J D, KIM S K, et al. Effect of temperature on the mechanical performance of plywood used in membrane-type LNG carrier insulation systems[J]. Journal of Wood Science, 2020, 66(1): 28. doi: 10.1186/s10086-020-01875-2
|
| [25] |
YU Y H, NAM S, LEE D, et al. Cryogenic impact resistance of chopped fiber reinforced polyurethane foam[J]. Composite Structures, 2015, 132: 12-19. doi: 10.1016/j.compstruct.2015.05.021
|
| [26] |
JEONG Y J, KIM H T, KIM J H, et al. Analysis of glass fiber reinforced composites in membrane-type LNG cargo containment system for structural safety using experimentally defined mechanical properties[J]. Composite Structures, 2021, 276: 114532. doi: 10.1016/j.compstruct.2021.114532
|
| [27] |
JEON S G, KIM J H, KIM J D, et al. Impact failure characteristics of LNG carrier cargo containment system[J]. International Journal of Mechanical Sciences, 2023, 240: 107938. doi: 10.1016/j.ijmecsci.2022.107938
|
| [28] |
KIM J H, KIM S K, KIM M H, et al. Numerical model to predict deformation of corrugated austenitic stainless steel sheet under cryogenic temperatures for design of liquefied natural gas insulation system[J]. Materials & Design, 2014, 57: 26-39.
|
| [29] |
BO S, SOO Y. Fatigue life assessment of KC-1 membrane considering the effects of cryogenic temperature and plastic deformation[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(5): 905-914. doi: 10.1007/s12541-019-00273-z
|
| [30] |
SOHN J M, BAE D M, BAE S Y, et al. Nonlinear structural behaviour of membrane-type LNG carrier cargo containment systems under impact pressure loads at -163 ℃[J]. Ships and Offshore Structures, 2017, 12(5): 722-733. doi: 10.1080/17445302.2016.1218111
|
| [31] |
KIM M S, KIM J H, KIM S K, et al. Experimental investigation of structural response of corrugated steel sheet subjected to repeated impact loading: Performance of LNG cargo containment system[J]. Applied Sciences, 2019, 9(8): 1558. doi: 10.3390/app9081558
|
| [32] |
KIM J H, PARK D H, LEE C S, et al. Effects of cryogenic thermal cycle and immersion on the mechanical characteristics of phenol-resin bonded plywood[J]. Cryogenics, 2015, 72: 90-102. doi: 10.1016/j.cryogenics.2015.09.007
|
| [33] |
PARK S B, LEE C S, CHOI S W, et al. Polymeric foams for cryogenic temperature application: Temperature range for non-recovery and brittle-fracture of microstructure[J]. Composite Structures, 2016, 136: 258-269. doi: 10.1016/j.compstruct.2015.10.002
|
| [34] |
HAN D S, PARK I B, KIM M H, et al. The effects of glass fiber reinforcement on the mechanical behavior of polyurethane foam[J]. Journal of Mechanical Science and Technology, 2010, 24(1): 263-266. doi: 10.1007/s12206-009-1136-3
|
| [35] |
PARK K B, KIM H T, HER N Y, et al. Variation of mechanical characteristics of polyurethane foam: Effect of test method[J]. Materials, 2019, 12(17): 2672. doi: 10.3390/ma12172672
|
| [36] |
JEONG Y J, KIM H T, KIM J D, et al. Evaluation of mechanical properties of glass fiber-reinforced composites depending on length and structural anisotropy[J]. Results in Engineering, 2023, 17: 101000. doi: 10.1016/j.rineng.2023.101000
|
| [37] |
KIM S K, LEE C S, KIM J H, et al. Computational evaluation of resistance of fracture capacity for SUS304L of liquefied natural gas insulation system under cryogenic temperatures using ABAQUS user-defined material subroutine[J]. Materials & Design, 2013, 50: 522-532.
|
| [38] |
PARK J S, KIM J H, JEONG Y C, et al. Effect of corrugated sheet diameter on structural behavior under cryogenic temperature and hydrodynamic load[J]. Metals, 2022, 12(3): 521. doi: 10.3390/met12030521
|
| [39] |
JEONG Y J, KIM H T, KIM S K, et al. Evaluation of the pressure-resisting capability of membrane-type corrugated sheet under hydrodynamic load[J]. Thin-walled Structures, 2021, 162: 107388. doi: 10.1016/j.tws.2020.107388
|
| [40] |
CHUL KIM B, HO YOON S, GIL LEE D. Pressure resistance of the corrugated stainless steel membranes of LNG carriers[J]. Ocean Engineering, 2011, 38(4): 592-608. doi: 10.1016/j.oceaneng.2010.12.013
|
| [41] |
LEE D, KIM K H, CHOI I, et al. Pressure-resisting capability of the knot area of the primary barrier for a LNG containment system[J]. Ocean Engineering, 2015, 95: 128-133. doi: 10.1016/j.oceaneng.2014.11.021
|
| [42] |
KIM J M, KIM J H, AHN J H, et al. Synthesis of nanoparticle- enhanced polyurethane foams and evaluation of mechanical characteristics[J]. Composites Part B: Engineering, 2018, 136: 28-38. doi: 10.1016/j.compositesb.2017.10.025
|
| [43] |
OH J H, BAE J H, KIM J H, et al. Effects of Kevlar pulp on the enhancement of cryogenic mechanical properties of polyurethane foam[J]. Polymer Testing, 2019, 80: 106093. doi: 10.1016/j.polymertesting.2019.106093
|
| [44] |
KIM J D, KIM J H, LEE D-H, et al. Synthesis and investigation of cryogenic mechanical properties of chopped-glass-fiber-reinforced polyisocyanurate foam[J]. Materials, 2021, 14(2): 446. doi: 10.3390/ma14020446
|
| [45] |
CHOI I, YU Y H, LEE D G. Cryogenic sandwich-type insulation board composed of E-glass/epoxy composite and polymeric foams[J]. Composite Structures, 2013, 102: 61-71. doi: 10.1016/j.compstruct.2013.02.017
|
| [46] |
PARK K J, KIM J H, KIM S K, et al. Material characteristics of random glass-mat-reinforced thermoplastic under cryogenic thermal cycles[J]. Science and Engineering of Composite Materials, 2019, 26(1): 270-281. doi: 10.1515/secm-2019-0013
|
| [47] |
YU Y H, KIM B G, LEE D G. Cryogenic reliability of the sandwich insulation board for LNG ship[J]. Composite Structures, 2013, 95: 547-556. doi: 10.1016/j.compstruct.2012.07.007
|
| [48] |
CHUN M S, KIM M H, KIM W S, et al. Experimental investigation on the impact behavior of membrane-type LNG carrier insulation system[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(6): 901-907. doi: 10.1016/j.jlp.2008.09.011
|
| [49] |
JEONG H K, YANG Y S. Strength analysis of mark Ⅲ cargo containment system using anisotropic failure criteria[J]. Journal of Advanced Research in Ocean Engineering, 2015, 1(4): 211-226. doi: 10.5574/JAROE.2015.1.4.211
|
| [50] |
HOLMES J, SOMMACAL S, DAS R, et al. Digital image and volume correlation for deformation and damage characterisation of fibre-reinforced composites: A review[J]. Composite Structures, 2023, 315: 116994. doi: 10.1016/j.compstruct.2023.116994
|
| [51] |
OH D J, LEE J M, CHUN M S, et al. Reliability evaluation of a LNGC insulation system with a metallic secondary barrier[J]. Composite Structures, 2017, 171: 43-52. doi: 10.1016/j.compstruct.2017.03.040
|
| [52] |
AHN Y, LEE J, PARK T, et al. Long-term approach for assessment of sloshing loads in LNG carrier, Part Ⅱ: Grouping method[J]. Marine Structures, 2023, 89: 103398. doi: 10.1016/j.marstruc.2023.103398
|
| [53] |
GRACZYK M, MOAN T. A probabilistic assessment of design sloshing pressure time histories in LNG tanks[J]. Ocean Engineering, 2008, 35(8/9): 834-855.
|
| [54] |
ZHAO Y C, CHEN H C. Numerical simulation of 3D sloshing flow in partially filled LNG tank using a coupled level-set and volume-of-fluid method[J]. Ocean Engineering, 2015, 104: 10-30. doi: 10.1016/j.oceaneng.2015.04.083
|
| [55] |
LUO M, WANG X, JIN X, et al. Three-dimensional sloshing in a scaled membrane LNG tank under combined roll and pitch excitations[J]. Ocean Engineering, 2020, 211: 107578. doi: 10.1016/j.oceaneng.2020.107578
|
| [56] |
JU H B, JANG B S, YIM K H. Prediction of sloshing pressure and structural response of LNG CCS[J]. Ocean Engineering, 2022, 266: 112298. doi: 10.1016/j.oceaneng.2022.112298
|
| [57] |
JU H B, JANG B S, CHOI J, et al. Structural safety assessment procedure for membrane-type LNG CCS considering hydroelasticity effect[J]. Marine Structures, 2021, 78: 102962. doi: 10.1016/j.marstruc.2021.102962
|
| [58] |
JIAO J L, ZHAO M M, JIA G Y, et al. SPH simulation of two side-by-side LNG ships' motions coupled with tank sloshing in regular waves[J]. Ocean Engineering, 2024, 297: 117022. doi: 10.1016/j.oceaneng.2024.117022
|
| [59] |
CAO Z X, XUE M A, XU G H, et al. Experimental and numerical study on effects of different excitations and liquid levels on sloshing in a large-scale LNG tank[J]. Ocean Engineering, 2024, 308: 118343. doi: 10.1016/j.oceaneng.2024.118343
|
| [60] |
AHN Y, KIM Y, KIM S Y. Database of model-scale sloshing experiment for LNG tank and application of artificial neural network for sloshing load prediction[J]. Marine Structures, 2019, 66: 66-82. doi: 10.1016/j.marstruc.2019.03.005
|
| [61] |
LEE D, KIM K H, CHOI I, et al. Dynamic properties of the corrugated stainless steel membrane reinforced with the glass composite pressure resisting structure for LNG carriers[J]. Composite Structures, 2014, 107: 382-388. doi: 10.1016/j.compstruct.2013.08.014
|
| [62] |
KIM K H, YOON S H, LEE D G. Vibration isolation of LNG containment systems due to sloshing with glass fiber composite[J]. Composite Structures, 2012, 94(2): 469-476. doi: 10.1016/j.compstruct.2011.08.008
|
| [63] |
KIM D H, KIM J H, KIM H T, et al. Evaluation of PVC-type insulation foam material for cryogenic applications[J]. Polymers, 2023, 15(6): 1401. doi: 10.3390/polym15061401
|
| [64] |
HWANG B K, KIM S K, KIM J H, et al. Dynamic compressive behavior of rigid polyurethane foam with various densities under different temperatures[J]. International Journal of Mechanical Sciences, 2020, 180: 105657. doi: 10.1016/j.ijmecsci.2020.105657
|
| [65] |
LEE D J, KIM M K, WALSH J, et al. Experimental characterization of temperature dependent dynamic properties of glass fiber reinforced polyurethane foams[J]. Polymer Testing, 2019, 74: 30-38. doi: 10.1016/j.polymertesting.2018.12.013
|
| [66] |
EHLERS S, GUIARD M, KUBICZEK J, et al. Experimental and numerical analysis of a membrane cargo containment system for liquefied natural gas[J]. Ships and Offshore Structures, 2017, 12(S1): S257-S267.
|
| [67] |
BOS R W, DEN BESTEN J H, KAMINSKI M L. A reduced order model for structural response of the Mark Ⅲ LNG cargo containment system[J]. International Shipbuilding Progress, 2020, 66(4): 295-313. doi: 10.3233/ISP-190272
|
| [68] |
LEE C S, CHO J R, KIM W S, et al. Evaluation of sloshing resistance performance for LNG carrier insulation system based on fluid-structure interaction analysis[J]. International Journal of Naval Architecture and Ocean Engineering, 2013, 5(1): 1-20. doi: 10.2478/IJNAOE-2013-0114
|
| [69] |
BAE J H, HWANG B K, KIM J H, et al. Cumulative damage of hollow glass microsphere weight fraction in polyurethane foam in response to cryogenic temperatures and repeated impact loading[J]. Cryogenics, 2020, 107: 103057. doi: 10.1016/j.cryogenics.2020.103057
|
| [70] |
BOGAERT H, BROSSET L, KAMINSKI M. Interaction between wave impacts and corrugations of Mark Ⅲ Containment System for LNG carriers: Findings from the Sloshel project[C]//ISOPE. Proceedings of the 20th International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2010: 32.
|
| [71] |
BOGAERT H, LEONARD S, MARHEM M, et al. Hydro-structural behaviour of LNG membrane containment systems under breaking wave impacts: Findings from the Sloshel project[C]//ISOPE. Proceedings of the 20th International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2010: 98-108.
|
| [72] |
WANG B, SHIN Y. Full-scale sloshing impact test and coupled fluid-structure FE modeling of LNG containment system[C]//ISOPE. Proceedings of the 19th International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2009: 39.
|
| [73] |
WANG B, SHIN Y. Full-scale test and FE analysis of LNG MK Ⅲ containment system under sloshing loads[C]//ISOPE. Proceedings of the 21st International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2011: 88.
|
| [74] |
LAFEBER W, BOGAERT H, BROSSET L. Comparison of wave impact tests at large and full scale: Results from the Sloshel project[C]//ISOPE. Proceedings of the 22nd International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2012: 374.
|
| [75] |
BROSSET L, MRAVAK Z, KAMINSKI M, et al. Overview of Sloshel project[C]//ISOPE. Proceedings of the 19th International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2009: 115-124.
|
| [76] |
KAMINSKI M L, BOGAERT H. Full-scale sloshing impact tests[C]//ISOPE. International Ocean and Polar Engineering Conference. Cupertino: ISOPE, 2009: 9-36.
|
| [77] |
KAMINSKI M L, BOGAERT H. Full-scale sloshing impact tests—Part I[J]. International Journal of Offshore and Polar Engineering, 2010, 20(1): 24.
|
| [78] |
MAGUIRE JR, WHITWORTH S, OGUIBE CN, et al. Sloshing dynamics-numerical simulations in support of the Sloshel project[C]//ISOPE. Proceedings of the 19th International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2009: 428.
|
| [79] |
BROSSET L, MARHEM M, LAFEBER W, et al. A MARK Ⅲ panel subjected to a flip-through wave impact: Results from the Sloshel project[C]//ISOPE. Proceedings of the 21st International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2011: 29.
|
| [80] |
MALENICA S, KOROBKIN A A, TEN I, et al. Combined semi-analytical and finite element approach for hydro structure interactions during sloshing impact - "Sloshel project"[C]//ISOPE. Proceedings of the 19th International Ocean and Polar Engineering Conference. Cupertino: ISOPE, 2009: 143-152.
|
| [81] |
CHUN M S, SEO Y S, HISASI I, et al. A comparative study on the impact damage of membrane type LNGC cargo containment system[C]//ASME. International Conference on Offshore Mechanics and Arctic Engineering. Honolulu: ASME, 2009: 255-264.
|
| [82] |
CHUN S E, HWANG J O, CHUN M S, et al. Direct assessment of structural capacity against sloshing loads using nonlinear dynamic FE analysis including hull structural interactions[C]//ISOPE. Proceedings of the 21st International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2011: 473.
|
| [83] |
HWANG J O, CHUN S E, JOH K H, et al. Direct assessment of structural capacity against sloshing using dynamic nonlinear FE analysis[C]//ISOPE. Proceedings of the 24th International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2014: 469.
|
| [84] |
GAO D W, LI C, SHI G J. Impact load capacity assessment of cargo containment system considering various loading area and duration characteristics[J]. Ocean Engineering, 2025, 333: 121471. doi: 10.1016/j.oceaneng.2025.121471
|
| [85] |
LIN Wen-hu, HUA Xue-ming, WU Yi-xiong, et al. Reviews of the cargo containment systems of large scale LNG carriers and the welding of related low temperature metals[J]. Ocean Engineering Equipment and Technology, 2014, 1(2): 160-165.
|
| [86] |
LUO Jing-hua, CHEN Chun-jian, WEI Wei. Design evolution of NO96 membrane cargo containment system for LNG vessels[J]. Journal of Shanghai Ship and Shipping Research Institute, 2024, 47(2): 14-20.
|
| [87] |
YOUN I H, KIM S C. Preventive maintenance topic models for LNG containment systems of LNG marine carriers using dock specifications[J]. Applied Sciences, 2019, 9(6): 1202. doi: 10.3390/app9061202
|
| [88] |
ABDELMALEK M, GUEDES SOARES C. Review of risk analysis studies in the maritime LNG sector[J]. Journal of Marine Science and Application, 2023, 22(4): 693-715. doi: 10.1007/s11804-023-00376-0
|
| [89] |
AMMAR N R. Environmental and cost-effectiveness comparison of dual fuel propulsion options for emissions reduction onboard lng carriers[J]. Brodogradnja, 2019, 70(3): 61-77. doi: 10.21278/brod70304
|
| [90] |
GONZÁLEZ G C, SUÁREZ D L F S, BONELLO J M, et al. An empirical analysis on the operational profile of liquefied natural gas carriers with steam propulsion plants[J]. Journal of Navigation, 2021, 74(2): 273-292. doi: 10.1017/S0373463320000612
|