| Citation: | CAO Wei-ping, ZHANG Zuo-peng, HE Zhan-peng, LUO Long-ping, LI Qing, KONG Gang-qiang. Model tests on temperature field and heat exchange efficiency of energy pile in loess foundation[J]. Journal of Traffic and Transportation Engineering, 2026, 26(1): 224-235. doi: 10.19818/j.cnki.1671-1637.2026.097 |
| [1] |
CAO Wei-ping, LI Qing-yuan, ZHAO Min, et al. Model tests on thermal-mechanical behavior of energy piles in loess ground under intermittent operation mode[J]. China Civil Engineering Journal, 2024, 57(9): 123-134.
|
| [2] |
CHEN Zhong-gou, ZHAO Shi-rao, ZHANG Zheng-wei. Heat transfer analysis of energy piles with parallel connected U-tubes[J]. Engineering Mechanics, 2013, 30(5): 238-243.
|
| [3] |
LI Ren-rong, KONG Gang-qiang, YANG Qing, et al. Study on influence of flow velocity on heat transfer efficiency and thermal coupling characteristics of energy piles in pile-raft foundation[J]. Rock and Soil Mechanics, 2020, 41(S1): 264-270, 298.
|
| [4] |
HAMADA Y, SAITOH H, NAKAMURA M, et al. Field performance of an energy pile system for space heating[J]. Energy and Buildings, 2007, 39(5): 517-524. doi: 10.1016/j.enbuild.2006.09.006
|
| [5] |
LUO J, ZHANG Q, ZHAO H F, et al. Thermal and thermomechanical performance of energy piles with double U-loop and spiral loop heat exchangers[J]. Journal of Geotech-nical and Geoenvironmental Engineering, 2019, 145(12): 04019109. doi: 10.1061/(ASCE)GT.1943-5606.0002175
|
| [6] |
SANI A K, SINGH R M, DE HOLLANDA CAVALCANTI TSUHA C, et al. Pipe-pipe thermal interaction in a geother-mal energy pile[J]. Geothermics, 2019, 81: 209-223. doi: 10.1016/j.geothermics.2019.05.004
|
| [7] |
PARK S, LEE S, LEE D, et al. Effect of thermal interfe-rence on energy piles considering various configurations of heat exchangers[J]. Energy and Buildings, 2019, 199: 381-401. doi: 10.1016/j.enbuild.2019.07.008
|
| [8] |
YANG Wei-bo, ZHANG Lai-jun, WANG Feng. Effects of the pile buried pipe parameters on the thermal-mechanical coupling characteristics of energy pile under the groundwater seepage[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 176-185.
|
| [9] |
YOU S, CHENG X H, GUO H X, et al. In-situ experi-mental study of heat exchange capacity of CFG pile geothermal exchangers[J]. Energy and Buildings, 2014, 79: 23-31. doi: 10.1016/j.enbuild.2014.04.021
|
| [10] |
GAO Wei, ZHANG Peng, PAN Ya-jing, et al. Analysis of heat transfer performance of double helix buried pipe energy pile[J]. Journal of Qingdao Technological University, 2022, 43(2): 28-36.
|
| [11] |
REN Lian-wei, XU Jian, KONG Gang-qiang, et al. Field tests on thermal response characteristics of micro steel pile group under multiple temperature cycles in winter conditions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2053-2060.
|
| [12] |
FAIZAL M, BOUAZZA A, SINGH R M. An experimental investigation of the influence of intermittent and continuous operating modes on the thermal behaviour of a full scale geothermal energy pile[J]. Geomechanics for Energy and the Environment, 2016, 8: 8-29. doi: 10.1016/j.gete.2016.08.001
|
| [13] |
ZHAO Song-ying, WANG Meng-na, ZHENG Hao-nan. Research on heat transfer performance of energy pile in clay foundation[J]. Journal of Jilin Jianzhu University, 2021, 38(3): 46-50.
|
| [14] |
BRANDL H. Energy foundations and other thermo-active ground structures[J]. Géotechnique, 2006, 56(2): 81-122.
|
| [15] |
GONG Yu-lie. Thermal transfer theory simulation and experimental research of U-shaped pipe pile buried heat exchanger[D]. Tianjin: Tianjin University, 2003.
|
| [16] |
ALQAWASMEH Q I, NARSILIO G A, MAKASIS N, et al. The impact of soil layering and groundwater flow on energy pile thermal performance[J]. Geomechanics for Energy and the Environment, 2024, 38: 100538. doi: 10.1016/j.gete.2024.100538
|
| [17] |
DA SILVA OLIVEIRA MORAIS T, DE HOLLANDA CAVALCANTI TSUHA C, NETO L A B, et al. Effects of seasonal variations on the thermal response of energy piles in an unsaturated Brazilian tropical soil[J]. Energy and Buildings, 2020, 216: 109971. doi: 10.1016/j.enbuild.2020.109971
|
| [18] |
PARK S, LEE S, OH K, et al. Engineering chart for ther-mal performance of cast-in-place energy pile considering ther-mal resistance[J]. Applied Thermal Engineering, 2018, 130: 899-921. doi: 10.1016/j.applthermaleng.2017.11.065
|
| [19] |
ZHANG Liang, MU Yong-chao, ZHANG Jie, et al. Nume-rical simulation study on influencing factors of heat transfer performance of energy pile[J]. Energy Conservation, 2024, 43(4): 5-9.
|
| [20] |
TAYLOR R N. Geotechnical centrifuge technology[M]. Abingdon: Taylor & Francis, 1988.
|
| [21] |
GUI Shu-qiang, CHENG Xiao-hui. In-situ tests on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094.
|
| [22] |
WANG Tie-xing, LIU Zi-cheng, LU Jing. Experimental study on coefficient of thermal conductivity and specific volume heat of loess[J]. Rock and Soil Mechanics, 2007, 28(4): 655-658.
|
| [23] |
YAO Yong-guo. Study on mechanical response and negative friction of soil around squeezing pile in collapsible loess site[D]. Lanzhou: Lanzhou University, 2018.
|
| [24] |
DENG You-sheng, LI Long, SUN Ya-ni, et al. Bearing capability of collapsible loess subgrade through cement-fly ash treatment[J]. Journal of Traffic and Transportation Engi-neering, 2023, 23(4): 92-103. doi: 10.19818/j.cnki.1671-1637.2023.04.006
|