JIAO Xin-long, LIU Xue-lian, WANG Ren-xiang, ZHAO Ya-peng. Optimization model and ACO of ship assignment for international liner transportation[J]. Journal of Traffic and Transportation Engineering, 2013, 13(6): 69-75.
Citation: JIAO Xin-long, LIU Xue-lian, WANG Ren-xiang, ZHAO Ya-peng. Optimization model and ACO of ship assignment for international liner transportation[J]. Journal of Traffic and Transportation Engineering, 2013, 13(6): 69-75.

Optimization model and ACO of ship assignment for international liner transportation

More Information
  • Author Bio:

    JIAO Xin-long(1975-), male, associate professor, PhD, +86-574-87616138, jxlchina001@163.com

  • Received Date: 2013-06-18
  • Publish Date: 2013-12-25
  • Aiming at the ship assignment problem of international liner transportation, the traditional dynamic ship assignment models were analyzed. Based on the fixed routes, ship types and ship amount, the influences of freight volume, port charge, fuel cost and river-crossing cost were analyzed. The minium operating cost was taken as objective function, ship amount and ship transportation volume were taken as constraint conditions, and a new optimization model of ship assignment was set up. Based on the neighborhood search technology, ant colony optimization (ACO) was used to solve the model, and example verification was carried out by using three typical routes. Calculation result shows that when the freight transportation demand can be satisfied, the optimization costs of the three typical routes are 133 723 000, 93 339 000, 139 464 000 yuan respectively, the total cost is 366 526 000 yuan and reduces by 1 106 000 yuan. By using genetic algorithm, the costs of the three typical routes are 134 051 000, 93 416 000, 140 127 000 yuan respectively, the total cost is 367 594 000 yuan. By using simulated annealing algorithm, the costs of the three typical routes are 133 985 000, 93 397 000, 139 859 000 yuan respectively, the total cost is 367 241 000 yuan. The optimization model of ship assignment for international liner transportation is feasible, and ACO has good advantage on the optimization model of ship assignment.

     

  • loading
  • [1]
    FAGERHOLT K. Ship scheduling with soft time windows: an optimization based approach[J]. European Journal of Operational Research, 2011, 131 (3): 559-571.
    [2]
    GELAREH S, PISINGER D. Simultaneous fleet deployment and network design of liner shipping[R]. Copenhagen: Technical University of Denmark, 2010.
    [3]
    LUAN Fa-min. Optimization research about fleet deployment model for liners[D]. Qingdao: Ocean University of China, 2009. (in Chinese).
    [4]
    CHEN Chao, ZHANG Zhe, ZENG Qing-cheng. Integrated scheduling model of mixed cross-operation for container terminal[J]. Journal of Traffic and Transportation Engineering, 2012, 12 (3): 92-100. (in Chinese). doi: 10.3969/j.issn.1671-1637.2012.03.016
    [5]
    RONEN D. Cargo ships routing and scheduling: survey of models and problems[J]. European Journal of Operational Research, 1983, 12 (2): 46-59.
    [6]
    TARAMILLO D A, PERAKIS D U. Fleet deployment optimization for liner shipping-part 2, implementation and results[J]. Maritime Policy and Management, 1991, 18 (4): 235-262. doi: 10.1080/03088839100000028
    [7]
    CHO S C, PERAKIS A N. Optimal liner fleet routing strategies[J]. Maritime Policy and Management, 1996, 23 (8): 78-87.
    [8]
    TING S C, TZENG G H. Ship scheduling and service network integration for liner shipping companies and strategic alliances[J]. Journal of the Eastern Asia Society for Transportation Studies, 2003, 31 (5): 765-776.
    [9]
    GELAREH S, NICHEL S, PISINGER D. Liner shipping hub network design in a competitive environment[J]. Transportation Research Part E: Logistics and Transportation Review, 2010, 46 (6): 991-1004. doi: 10.1016/j.tre.2010.05.005
    [10]
    XU Tian-fang, HU Li-na. Research on assignment of domestic liners[J]. Journal of Dalian Maritime University, 2000, 26 (2): 52-55. (in Chinese). doi: 10.3969/j.issn.1006-7736.2000.02.014
    [11]
    JIN Zhi-hong, HU Jie, YANG Yong-zhi. Optimization on voyage scheduling for container feeder lines[J]. Journal of Dalian Maritime University, 2009, 35 (3): 32-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS200903010.htm
    [12]
    WANG Wen. Container liner operation economic model and the departure interval decision-making[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12 (5): 103-109. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201205017.htm
    [13]
    POWELL B J, PERAKIS A N. Flee deployment optimization for liner shipping: an integer programming model[J]. Maritime Policy and Management, 1997, 24 (2): 183-192. doi: 10.1080/03088839700000069
    [14]
    MENG Qing, WANG S. Liner shipping service network design with empty container repositioning[J]. Transportation Research Part E: Logistics and Transportation Review, 2011, 47 (5): 695-708. doi: 10.1016/j.tre.2011.02.004
    [15]
    JIN Zhi-hong, LI Na, CHEN Meng. Optimization on liner fleet assignment in up and down shipping periods[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2012, 36 (2): 219-222. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ201202000.htm
    [16]
    XU Hua, NING Tao, TIAN Lu. An optimization model of container liner service in competitive market[J]. Journal of Dalian Maritime University, 2012, 38 (3): 55-58. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201203014.htm
    [17]
    DOERNER K F, GUTJAHR W J, HARTL R F, et al. Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection[J]. European Journal of Operational Research, 2006, 171 (3): 830-841.
    [18]
    MENASCE D A, CASALI-CCHIO E, DUBEY V. On optimal service selection in service oriented architectures[J]. Performance Evaluation, 2010, 67 (8): 659-675. doi: 10.1016/j.peva.2009.07.001
    [19]
    ZHANG Chang-sheng, REN Ming-kang, YIN Hao, et al. Analysis and comparison of ant colony algorithms for service selection[J]. Journal of Northeastern University: Natural Science, 2013, 34 (4): 500-504. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201304011.htm
    [20]
    MOHAN B C, BASKARAN R. A survey: ant colony optimization based recent research and implementation on several engineering domain[J]. Expert Systems with Applications, 2012, 39 (4): 4618-4627.
    [21]
    LI Lin, LIU Shi-xin, TANG Jia-fu. Vehicle routing problem with time reservation under B2Celectronic commerce and ant colony algorithm for multi-objective optimization[J]. Control Theory and Applications, 2011, 28 (1): 87-93. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201101013.htm

Catalog

    Article Metrics

    Article views (1045) PDF downloads(1906) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return