Effect of traction force on lateral stability of locomotive
Article Text (Baidu Translation)
-
摘要: 为了探明机车牵引状态下的横向稳定性, 采用多体动力学软件SIMPACK建立了某型提速机车动力学模型, 以非线性临界速度作为机车横向稳定性的评判指标, 并采用数值积分方法计算了机车临界速度, 研究了牵引系数对机车直线和曲线临界速度的影响规律。研究结果表明: 机车牵引力的存在改变了轮轨切向蠕滑力的大小和作用方向; 随着牵引系数的增大, 机车在直线和曲线上的临界速度均先增大后减小; 机车曲线上的临界速度低于直线上的, 同一牵引系数下, 曲线半径越小, 临界速度越低; 在牵引工况下, 轮对横移量不宜再作为机车曲线稳定性的判定指标, 采用轮轨纵向蠕滑力对稳定性进行评判更为合理。Abstract: In order to investigate the lateral stability of locomotive under traction condition, a dynamics model of a speed-raising locomotive was put forward by using MBS software SIMPACK. The nonlinear critical speed of locomotive was regarded as the judging index of the lateral stability. The numerical integration method was adopted to calculate the critical speed. The effect of the traction coefficient on the critical speeds was studied, including the speeds on tangent and curved tracks. The result indicates that the traction force influences the value and the direction of wheel/rail creep force greatly. The critical speed increases firstly with the increase of the traction coefficient, and then reduces. The critical speed on curved track is lower than that on tangent track under the same traction coefficient, and the smaller the curve radius is, the lower the critical speed is. It is pointed that the shift of wheelset should not be selected as the judging index of the lateral stability of locomotive, it is reasonable to judge the lateral stability using longitudinal creep force.
-
Key words:
- locomotive stability /
- traction force /
- critical speed /
- creep force
-
[1] 刘建新, 王开云. 抗蛇行减振器对机车运行平稳性的影响[J]. 交通运输工程学报, 2006, 6(4): 1-4. doi: 10.3321/j.issn:1671-1637.2006.04.001LI U Jian-xin, WANG Kai-yun. Effect of yaw dampers on locomotive riding comfortability[J]. Journal of Traffic and Transportation Engineering, 2006, 6(4): 1-4. (in Chinese) doi: 10.3321/j.issn:1671-1637.2006.04.001 [2] 刘建新, 王开云, 封全保, 等. 横向减振器对机车平稳性能的影响[J]. 交通运输工程学报, 2006, 6(3): 1-4. doi: 10.3321/j.issn:1671-1637.2006.03.001LI U Jian-xin, WANG Kai-yun, FENG Quan-bao, et al. Influence of lateral damper on locomotive riding quality[J]. Journal of Traffic and Transportation Engineering, 2006, 6(3): 1-4. (in Chinese) doi: 10.3321/j.issn:1671-1637.2006.03.001 [3] 王珏, 李治. 机车蛇行运动的动力学仿真报告[J]. 铁道机车车辆, 2003, 23(6): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200306007.htmWANGJue, LI Zhi. Dynamics si mulation report of snake of motion of a locomotive[J]. Rail way Locomotive and Car, 2003, 23(6): 24-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200306007.htm [4] 卜继玲, 刘友梅, 李芾. 机车系统动力学仿真模型研究[J]. 机车电传动, 2004(4): 3-6. doi: 10.3969/j.issn.1000-128X.2004.04.002BU Ji-ling, LI U You-mei, LI Fu. Study on si mulation of locomotives systemdynamics[J]. Electric Drive for Locomo-tives, 2004(4): 3-6. (in Chinese) doi: 10.3969/j.issn.1000-128X.2004.04.002 [5] 曾京, 邬平波. 高速列车的稳定性[J]. 交通运输工程学报, 2005, 5(2): 1-4. doi: 10.3321/j.issn:1671-1637.2005.02.001ZENG Jing, WU Ping-bo. Stability of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2005, 5(2): 1-4. (in Chinese) doi: 10.3321/j.issn:1671-1637.2005.02.001 [6] 王开云, 翟婉明, 封全保. 机车牵引状态下曲线通过导向特性研究[J]. 中国铁道科学, 2006, 27(2): 71-76. doi: 10.3321/j.issn:1001-4632.2006.02.015WANG Kai-yun, ZHAI Wan-ming, FENG Quan-bao. Study on the steering characteristics of curve negotiation under locomotive traction[J]. China Rail way Science, 2006, 27(2): 71-75. (in Chinese) doi: 10.3321/j.issn:1001-4632.2006.02.015 [7] 孙翔. 牵引与导向在机车径向转向架上的协调[J]. 机车电传动, 1995(2): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC502.002.htmSUN Xiang. Coordination of traction and steering on self-steering loco bogie[J]. Electric Drive for Locomotives, 1995(2): 7-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC502.002.htm [8] KALKERJ J. Afast algorithmfor the si mplifiedtheory of rolling contact[J]. Vehicle System Dynamics, 1982, 11(1): 1-13. doi: 10.1080/00423118208968684 [9] 黄成荣, 詹斐生. 机车非线性横向稳定性分析的数值分叉方法[J]. 铁道学报, 1994, 16(2): 1-6. doi: 10.3321/j.issn:1001-8360.1994.02.001HUANG Cheng-rong, ZHAN Fei-sheng. The numerical bifurcation method of nonlinear lateral stability analysis of a locomotive[J]. Journal of the China Rail way Society, 1994, 16(2): 1-6. (in Chinese) doi: 10.3321/j.issn:1001-8360.1994.02.001 [10] 张雪锋, 汪宏峰, 杨绍普. 车辆转向架Hopf分岔分析[J]. 石家庄铁道学院学报, 2003, 16(4): 13-17. doi: 10.3969/j.issn.2095-0373.2003.04.004ZHANG Xue-feng, WANG Hong-feng, YANG Shao-pu. Hopf bifurcation analysisfor the vehicle bogie[J]. Journal of Shijiazhuang Rail way Institute, 2003, 16(4): 13-17. (in Chinese) doi: 10.3969/j.issn.2095-0373.2003.04.004 [11] 邬平波, 曾京. 确定车辆系统线性和非线性临界速度的新方法[J]. 铁道车辆, 2000, 38(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200005000.htmWU Ping-bo, ZENGJing. Anew method to determine linear and nonlinear critical speed of the vehicle system[J]. Rolling Stock, 2000, 38(5): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200005000.htm [12] 黄成荣. 抗蛇行减振器及电机转矩对机车运动稳定性的影响[J]. 铁道机车车辆, 1994, 14(4): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC199404004.htmHUANG Cheng-rong. Effect of yaw damper and torque on locomotive lateral stability[J]. Rail way Locomotive and Car, 1994, 14(4): 27-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC199404004.htm [13] POLACH O. Comparability of the non-linear and linearized stability assessment during rail way vehicle design[J]. Vehicle System Dynamics, 2006, 44(SUP): 129-138. -