Fractal features of size-distributions of truck transportation hubs in China
-
摘要: 为了定量描述中国公路货运枢纽体系结构现状, 将公路货运量作为货运枢纽的规模参数, 推导了分维数的计算公式, 选取1997~2007年的货运量统计数据, 计算了200个公路货运枢纽规模分布的分维数。数据拟合发现: 1997~1999年公路货运枢纽的规模分布具有双分形特征, 2000~2007年的规模分布呈单分形结构, 且分维数介于1.464 6~1.570 1间, 公路货运枢纽体系的规模分布与城镇体系基本一致。分析结果表明: 中国公路货运枢纽体系规模分布从双分形到单分形的演化显示其发育较好, 需加强大型公路货运枢纽建设, 以进一步优化公路货运枢纽体系结构。Abstract: In order to quantitatively evaluate the system topology of Chinese truck transportation hubs in recent years, highway freight volume was regarded as a size index of truck transportation hub.A novel formula for exactly calculating the fractal dimension of size-distribution of the truck transportation hub was presented.The fractal dimensions of size-distributions of 200 largest truck transportation hubs during 1997~2007 were calculated by the formula based on the statistical data of highway freight volumes.Computation result shows that the size-distributions of truck transportation hubs during 1997~1999 are bi-fractal, while that are single fractal and the fractal dimensions are between 1.464 6 and 1.570 1 during 2000~2007, and the size-distribution of truck transportation hub system is adapted to city system.The evolvement of the fractal topology from bi-fractal to single fractal indicates a rational evolutionary progress of size-distributions of truck transportation hubs, and large truck transportation hubs should be supported to optimize the structure of truck transportation hub system.
-
表 1 枢纽体系规模分布参数
Table 1. Size-distribution parameters of hub system
参数 年份 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 D1 1.712 6 1.688 2 1.761 3 R12 0.992 3 0.986 9 0.988 8 D2 0.488 7 0.598 8 0.639 4 R22 0.955 8 0.975 8 0.978 7 D 1.464 6 1.503 3 1.524 5 1.525 6 1.469 3 1.570 1 1.566 7 1.503 8 R2 0.965 9 0.973 1 0.970 0 0.970 4 0.969 9 0.964 7 0.978 1 0.969 5 表 2 城镇体系规模分布参数
Table 2. Size-distribution parameters of city system
参数 年份 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 q 0.586 6 0.660 9 0.656 7 0.625 0 0.630 4 0.637 0 0.637 3 0.633 1 0.646 4 0.637 5 0.635 8 R2 0.961 4 0.969 0 0.973 1 0.976 5 0.982 1 0.984 7 0.986 7 0.986 8 0.988 0 0.987 5 0.987 2 D 1.638 9 1.466 2 1.481 8 1.562 4 1.557 9 1.545 8 1.548 3 1.558 7 1.528 5 1.549 0 1.552 7 -
[1] 陈彦光, 罗静. 城市位序-规模问题的分形理论初探[J]. 信阳师范学院学报: 自然科学版, 1998, 11(3): 264-268. doi: 10.3969/j.issn.1003-0972.1998.03.016CHEN Yan-guang, LUOJing. Afractal study on Zipf s lawand rank-size rule of cities in an urban system[J]. Journal ofXinyang Teachers College: Natural Science Edition, 1998, 11(3): 264-268. (in Chinese) doi: 10.3969/j.issn.1003-0972.1998.03.016 [2] 陈勇, 陈嵘, 艾南山, 等. 城市规模分布的分形研究[J]. 经济地理, 1993, 13(3): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JJDL199303009.htmCHEN Yong, CHEN Rong, AI Nan-shan, et al. Fractal studyon size distribution of city system[J]. Economic Geography, 1993, 13(3): 48-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JJDL199303009.htm [3] 周伟, 姚志刚, 王元庆, 等. 基于节点重要度的公路运输站场建设序列[J]. 长安大学学报: 自然科学版, 2006, 26(2): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200602016.htmZHOU Wei, YAO Zhi-gang, WANG Yuan-qing, et al. Opti mizingitems order of highway transport terminals basedon analyzing i mportance of nodes[J]. Journal of Chang anUniversity: Natural Science Edition, 2006, 26(2): 69-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200602016.htm [4] 郝合瑞, 邵春福, 岳昊, 等. 基于指标链的道路运输站场布局评价方法[J]. 长安大学学报: 自然科学版, 2009, 29(1): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200901017.htmHAO He-rui, SHAO Chun-fu, YUE Hao, et al. Evaluationmethod of road transportation terminals plan based on indicatorchains[J]. Journal of Chang an University: Natural ScienceEdition, 2009, 29(1): 74-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200901017.htm [5] KI M K S, BENGUIGUI L, MARI NOV M. The fractalstructure of Seoul s public transportation system[J]. Cities, 2003, 20(1): 31-39. doi: 10.1016/S0264-2751(02)00094-X [6] 陈涛, 刘继生. 城市体系分形特征的初步研究[J]. 人文地理, 1994, 9(1): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-RWDL401.003.htmCHEN Tao, LI UJi-sheng. Preli minary studies on the fractalproperties of systems of towns[J]. Human Geography, 1994, 9(1): 25-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RWDL401.003.htm [7] 仵宗卿, 戴学珍, 杨吾扬. 帕雷托公式重构及其与城市体系演化[J]. 人文地理, 2000, 15(1): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-RWDL200001003.htmWU Zong-qing, DAI Xue-zhen, YANG Wu-yang. On recon-struction of Parato formula and its relationship withdevelopment of urban system[J]. Human Geography, 2000, 15(1): 15-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RWDL200001003.htm [8] URZUA C M. Asi mple and efficient test for Zipf s law[J]. Economics Letters, 2000, 66(3): 257-260. [9] 陈彦光, 刘继生. 城市系统的异速生长关系与位序-规模法则———对Steindl模型的修正与发展[J]. 地理科学, 2001, 21(5): 412-416. doi: 10.3969/j.issn.1000-0690.2001.05.006CHEN Yan-guang, LI U Ji-sheng. Reconstructing Steindl smodel: fromthelawof allometric growthtothe rank-size ruleof urban systems[J]. Scientia Geographica Sinica, 2001, 21(5): 412-416. (in Chinese) doi: 10.3969/j.issn.1000-0690.2001.05.006 [10] 谈明洪, 范存会. Zipf维数和城市规模分布的分维值的关系探讨[J]. 地理研究, 2004, 23(2): 243-248. doi: 10.3321/j.issn:1000-0585.2004.02.012TAN Ming-hong, FAN Cun-hui. Relationship between Zipfdi mension and fractal di mension of city-size distribution[J]. Geographical Research, 2004, 23(2): 243-248. (in Chinese) doi: 10.3321/j.issn:1000-0585.2004.02.012 [11] SALI NGAROS N A, WEST B J. A universal rule for thedistribution of sizes[J]. Environment and Planning B: Planning and Design, 1999, 26(6): 909-923. -