-
摘要: 利用微元法, 推导了钢轨感应电流的数学模型。以大秦铁路实时同步测试数据为基础, 分析了电气化铁道钢轨感应电流的形成机理、分布特性、影响因素及其对钢轨电压的影响。实测数据对比表明: 该模型误差在10%以内, 可以满足工程要求; 机车与牵引变电所的距离越大, 钢轨感应电流越大, 其分布为中间大, 两端小; 衰减常数越大, 钢轨感应电流越大, 感应电流饱和速度越快; 钢轨感应电流具有降低钢轨电压的效果, 机车与牵引变电所的距离越大, 效果越明显, 随着距离的增加, 感应电流对钢轨电流输入点的电压最大可以降低55%。Abstract: The mathematical model of induced current for rail was deduced by using infinitesimal method.On the basis of the real-time synchronous testing data of the Da-Qin Railway, the formation mechanism, distribution characteristic, influencing factors of induced current and its influence on rail voltage were analyzed in detail.Computation result shows that the error of the model is less than 10% and it can satisfy the engineering data requirements.The farther the distance between locomotive and traction substation, the bigger induced current becomes, whose distribution is great in the middle and little at both ends.The bigger damping constant is, the bigger induced current becomes, the faster its saturated velocity is.Induced current has effect to reduce rail voltage.The farther the distance between locomotive and traction substation, the more obvious the effect becomes.With the increasing distance, induced current can reduce the voltage by 55% at current enter point.
-
Key words:
- electrified railway /
- rail /
- induced current /
- distribution characteristic /
- damping constant
-
-
[1] 江中澳, 赵学义, 杨永川, 等. 电气化铁道地电位升对通信站影响的研究[J]. 铁道学报, 1986, 8 (2): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB198602003.htmJI ANG Zhong-ao, ZHAO Xue-yi, YANG Yong-chuan, et al. Study on the effects of ground potential caused by electrified rail ways on telecommunication stations[J]. Journal of the China Rail way Society, 1986, 8 (2): 32-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB198602003.htm [2] 周东朋, 吴俊勇, 吴燕, 等. 京津城际高速铁路弓网动态系统有限元仿真[J]. 交通运输工程学报, 2009, 9 (1): 25-28. http://transport.chd.edu.cn/article/id/200901006ZHOU Dong-peng, WU Jun-yong, WU yan, et al. Finite element si mulation on pantograph-catenary dynamic systemfor Beijing-Tianjinintercity high-speed rail way[J]. Journal of Traffic and Transportation Engineering, 2009, 9 (1): 25-28. (in Chinese) http://transport.chd.edu.cn/article/id/200901006 [3] 韩放. 电气化铁路牵引网对地面与地下传输系统耦合的分析方法[J]. 铁道学报, 1994, 16 (2): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB402.005.htmHAN Fang. An approachto analysingthe coupling of contact wires of electrified rail way with transmission system on and beneath the earth surface[J]. Journal of the China Rail way Society, 1994, 16 (2): 39-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB402.005.htm [4] 张战平. 直供方式交流电气化铁道钢轨漏泄电流分布特性及其地电位[J]. 铁道学报, 1991, 13 (1): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB199101002.htmZHANG Zhan-ping. The rail leak current distributing charac-teristic and its ground potential in the AC electrification rail way with direct power supply system[J]. Journal of the China Rail way Society, 1991, 13 (1): 25-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB199101002.htm [5] SEOJ H, KI MS W, JUNGI H, et al. Dynamic analysis of a pantograph-catenary system using absolute nodal coordin-ates[J]. Vehicle System Dynamics, 2006, 44 (8): 615-630. doi: 10.1080/00423110500373721 [6] 何正友, 方雷, 郭东, 等. 基于AT等值电路的牵引网潮流计算方法[J]. 西南交通大学学报, 2008, 43 (1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200801002.htmHE Zheng-you, FANG Lei, GUO Dong, et al. Algorithm for power flow of electric traction network based on equiva-lent circuit of AT-fed system[J]. Journal of SouthwestJiaotong University, 2008, 43 (1): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200801002.htm [7] WOODHOUSE DJ, MIDDLETON R H. Consistency in ground potential rise esti mation utilizing fall of potential method data[J]. IEEE Transactions on Power Delivery, 2005, 20 (2): 1226-1234. [8] CHEN Shi-lin, HSUS C, TSENG C T, et al. Analysis of rail potential and stray current[J]. IEEE Transactions on Vehicular Technology, 2006, 55 (1): 67-75. [9] 李韶军, 孙亮勤. 直供方式钢轨电流分布数学模型与软件仿真[J]. 北方交通大学学报, 1991, 15 (3): 68-76. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT199103010.htmLI Shao-jun, SUN Liang-qin. Model and si mulation of rail current on no-transformer electrified rail way[J]. Journal of NorthernJiaotong University, 1991, 15 (3): 68-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT199103010.htm [10] 毕红军. 电气化铁道牵引回流分布的理论分析[J]. 北方交通大学学报, 1994, 18 (2): 251-258. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT402.027.htmBI Hong-jun. Theory analysis of return propulsion current in rails on electrified rail way line[J]. Journal of Northern Jiaotong University, 1994, 18 (2): 251-258. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT402.027.htm [11] 赵慧芳. 电气化铁道AT供电用自耦变压器[J]. 变压器, 1998, 35 (8): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-BYQZ808.002.htmZHAO Hui-fang. Auto-transformer for AT power supply of electric rail way[J]. Transformer, 1998, 35 (8): 9-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BYQZ808.002.htm -