Prediction model of bulk modulus reduction for porous asphalt pavement
-
摘要: 根据多孔沥青路面体积模量的衰变过程, 计算了龚帕斯预测模型的3个参数, 提出了体积模量随时间衰变的预测模型, 并分析了空隙率随时间的变化规律。分析结果表明: 对于使用期为12年的多孔沥青路面, 描述体积模量衰变的理论曲线与体积模量衰变的预测曲线基本一致, 理论值与预测值的最小误差率为0.126%, 最大误差率为1.997%;空隙率随时间呈对数减小, 并在空隙率小于16%后减小的趋势趋于平缓。可见, 模型的预测结果符合体积模量的衰变规律, 可应用于多孔沥青路面的体积模量衰变特性分析。Abstract: According to the reduction process of bulk modulus for porous asphalt pavement, the three parameters of Gompertz prediction model were calculated, a prediction model of the reduction of bulk modulus was proposed, and the change rules of air void content with time were analyzed.The result indicates that the theoretical curve and predicted curve of bulk modulus reduction are basically consistent for porous asphalt pavement with 12 years' service life.The minimum error rate between the predicted value and the theoretical value is 0.126%, and the maximum error rate is 1.997%.The air void content decreases logarithmically and the decreasing trend is smooth as the air void content is less than 16%.Therefore, the prediction model is feasible to study the bulk modulus reduction of porous asphalt pavement.
-
Key words:
- pavement engineering /
- porous asphalt pavement /
- Gompertz model /
- bulk modulus /
- reduction rules
-
表 1 体积模量参数的理论值
Table 1. Theoretical values of bulk moduli
t/年 KΦ/MPa Φ/% KdT/MPa 1 360.815 20.000 1 374.531 2 375.245 18.286 1 513.939 3 389.678 16.571 1 670.931 4 404.110 15.913 1 763.671 5 418.543 15.783 1 817.144 6 421.429 15.652 1 836.132 7 424.316 15.522 1 855.176 8 427.202 15.391 1 874.433 9 430.089 15.261 1 893.747 10 432.975 15.130 1 913.279 11 435.812 15.000 1 932.721 12 438.748 14.870 1 952.595 表 2 体积模量参数的预测值
Table 2. Prediction values of bulk moduli
t/年 KdP/MPa KdT/MPa 误差/MPa 误差率/% 1 1 397.578 1 374.531 -23.047 -1.677 2 1 538.029 1 513.939 -24.090 -1.591 3 1 646.553 1 670.931 24.378 1.459 4 1 728.457 1 763.671 35.214 1.997 5 1 789.245 1 817.144 27.899 1.535 6 1 833.824 1 836.132 2.308 0.126 7 1 866.240 1 855.176 -11.064 -0.596 8 1 889.669 1 874.433 -15.236 -0.813 9 1 906.529 1 893.747 -12.782 -0.675 10 1 918.625 1 913.279 -5.347 -0.279 11 1 927.285 1 932.721 5.436 0.281 12 1 933.474 1 952.595 19.121 0.979 表 3 空隙率的预测值
Table 3. Prediction values of air void contents
t/年 ΦP/% t/年 ΦP/% t/年 ΦP/% 1 19.567 5 16.142 9 15.109 2 17.898 6 15.681 10 15.067 3 16.916 7 15.386 11 15.064 4 16.380 8 15.207 12 15.062 -
[1] 汪海年, 郝培文, 吕光印. 沥青混合料内部空隙分布特征[J]. 交通运输工程学报, 2009, 9 (1): 6-11. doi: 10.3321/j.issn:1671-1637.2009.01.002WANG Hai-nian, HAO Pei-wen, LU Guang-yin. Distribu-tion properties of internal air voids in asphalt mixtures[J]. Journal of Traffic and Transportation Engineering, 2009, 9 (1): 6-11. (in Chinese) doi: 10.3321/j.issn:1671-1637.2009.01.002 [2] JU REZ TOM S M S, DE LABANDA E B, DE RUIZ HOLGADO A P, et al. Estimation of vaginal probiotic lacto-bacilli growth parameters with the application of the Gompertz model[J]. Canadian Journal of Microbiology, 2002, 48 (1): 82-92. doi: 10.1139/w01-135 [3] FRANK T D. Multivariate Markov processes for stochastic systems with delays: application to the stochastic Gompertz model with delay[J]. Physical Review E, 2002, 66 (1): 1-8. [4] CELEKLI A, BALCI M, BOZKURT H. Modelling of scenedes-mus obliquus; function of nutrients with modified Gompertz model[J]. Bioresource Technology, 2008, 99 (18): 8742-8747. doi: 10.1016/j.biortech.2008.04.028 [5] 余闯, 刘松玉. 路堤沉降预测的Gompertz模型应用研究[J]. 岩土力学, 2005, 26 (1): 82-86. doi: 10.3969/j.issn.1000-7598.2005.01.017YU Chuang, LI U Song-yu. Study on prediction of embank-ment settlement with the Gompertz model[J]. Rock and Soil Mechanics, 2005, 26 (1): 82-86. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.01.017 [6] 吴起星, 胡辉. 基于Gompertz成长曲线的真空预压软土沉降规律分析[J]. 岩石力学与工程学报, 2006, 25 (Supp. 2): 3600-3606. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2040.htmWU Qi-xing, HU Hui. Law analysis of soft soil settlement treated by vacuum preloading based on Gompertz growth curve[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25 (Supp. 2): 3600-3606. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2040.htm [7] 邹德强. 高填方路基沉降反演及预测方法的研究[D]. 长沙: 长沙理工大学, 2004.ZOU De-qiang. Study on back-analysis and prediction method for high embankment settlement[D]. Changsha: Changsha University of Science and Technology, 2004. (in Chinese) [8] 徐晓宇. 高填方路基沉降变形特性及其预测方法研究[D]. 长沙: 长沙理工大学, 2005.XU Xiao-yu. The research on settlement character and pre-diction method for high embankment[D]. Changsha: Changsha University of Science and Technology, 2005. (in Chinese) [9] 叶朝良, 林育墚. 龚帕斯曲线方程在沉降预测中的应用[J]. 石家庄铁道学院学报, 2005, 18 (1): 44-46. doi: 10.3969/j.issn.2095-0373.2005.01.012YE Chao-liang, LI N Yu-liang. Application of Compertz curve equationin settlement prediction[J]. Journal of Shijiazhuang Rail way Institute, 2005, 18 (1): 44-46. (in Chinese) doi: 10.3969/j.issn.2095-0373.2005.01.012 [10] 赵明华, 吴建宁, 陈昌富, 等. 基于龚帕斯生长曲线的高填石路堤沉降规律分析[J]. 中国岩溶, 2005, 24 (2): 115-118. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200502005.htmZHAO Ming-hua, WU Jian-ning, CHEN Chang-fu, et al. Analysis to high rockfill embankment settlement on the basis of Compertz growth curve[J]. Carsologica Sinica, 2005, 24 (2): 115-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200502005.htm [11] 史謌, 杨东全, 杨慧珠. 岩石的孔隙弹性研究[J]. 北京大学学报: 自然科学版, 2000, 36 (2): 214-220. doi: 10.3321/j.issn:0479-8023.2000.02.012SHI Ge, YANG Dong-quan, YANG Hui-zhu. The research of rock poroelasticity[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2000, 36 (2): 214-220. (in Chinese) doi: 10.3321/j.issn:0479-8023.2000.02.012 [12] MAVKO G, MUKERJI T. Seismic pore space compressibility and Gassmann s relation[J]. Geophysics, 1995, 60 (6): 1743-1749. -