Section nonlinear analysis of salt-freezing reinforced concrete pure bending component based on damage theory
-
摘要: 在试验基础上, 引入损伤力学中的Loland模型进行盐冻混凝土的单轴抗压分析, 并将模型下降段修正为非线性关系表达式。依据试验数据, 对《混凝土结构设计规范》(GB50010—2002)建议的混凝土应力-应变表达式中的参数进行回归, 结合修正Loland模型, 得到与冻融循环次数和水灰比相关的混凝土盐冻损伤本构模型。编制Fortran程序, 应用所提出的本构模型对盐蚀、持续荷载和冻融循环共同作用下的钢筋混凝土梁进行截面非线性全过程分析。研究结果表明: 多因素复合作用下, 随冻融循环次数与水灰比的增加, 混凝土初始损伤不断增大, 峰值应力降低, 对应应变加大, 但延性无明显变化; 盐冻条件下, 随着持续荷载增大, 梁的极限承载力降低。
-
关键词:
- 钢筋混凝土梁 /
- 混凝土盐冻损伤本构模型 /
- 修正Loland模型 /
- 持续荷载 /
- 截面非线性分析
Abstract: Based on the experiments, the Loland model used in damage mechanics was introduced into concrete uniaxial compression analysis and the descending portion of the model was modified into nonlinear expression.The parameters of the stress-strain relationship for concrete suggested by code for design of concrete structures(GB 50010—2002)were processed by data regression fitting.Combined with the modified Loland model, the concrete salt-freezing damage constitutive model related to freezing-thawing cycle time and water-cement ratio was derived.With the compiling programs by Fortran language, the section nonlinear analysis of RC beam under salt attack, sustaining load and 400 times freezing-thawing cycles was done.The result indicates that under the action of multi-factors, with the increase of the cycle times and the ratio, the initial damage of concrete is growing, the peak stress reduces and its corresponding strain increases, but the ductility is not significant change.With the increase of continuous load, the ultimate bearing capacity of the beam decreases. -
表 1 混凝土初始损伤值
Table 1. Initial damage values of concrete
w/c N 0 50 100 150 200 0.44 0.000 0.181 0.385 0.530 0.674 0.50 0.000 0.295 0.618 0.750 0.898 0.55 0.000 0.445 0.733 0.821 0.939 表 2 计算参数
Table 2. Computational parameters
N a b σcN εcN 300 2.236 2.172 18.32 0.004 28 400 2.008 2.764 16.86 0.005 08 表 3 RC梁截面极限弯矩计算值与试验值
Table 3. Limit bending moment's calculation results and experiment data of RC beam's cross section
Mu/(kN·m) 参考梁 0 30%Pu 50%Pu 70%Pu 计算值 4.828 4.579 4.415 4.289 4.074 试验值 5.548 5.320 4.568 4.401 4.235 误差/% 12.98 13.93 9.67 2.54 3.80 -
[1] 商怀帅, 宋玉普, 覃丽坤. 普通混凝土冻融循环后性能的试验研究[J]. 混凝土与水泥制品, 2005(2): 9-11. doi: 10.3969/j.issn.1000-4637.2005.02.003SHANG Huai-shuai, SONG Yu-pu, TAN Li-kun. Experi-mental study on properties of concrete after freezing and thawing cycles[J]. China Concrete and Cement Products, 2005(2): 9-11. (in Chinese) doi: 10.3969/j.issn.1000-4637.2005.02.003 [2] 商怀帅, 尹全贤, 宋玉普, 等. 冻融循环后普通混凝土变形特性的试验研究[J]. 人民长江, 2006, 37(4): 58-61. doi: 10.3969/j.issn.1001-4179.2006.04.023SHANG Huai-shuai, YI N Quan-xian, SONG Yu-pu, et al. Experimental study of ordinary concrete s deformation prop-erties after freeze-thaw cycles[J]. Yangtze River, 2006, 37(4): 58-61. (in Chinese) doi: 10.3969/j.issn.1001-4179.2006.04.023 [3] 宋玉普, 陈飞, 张众, 等. 冻融环境下引气混凝土双轴拉-压强度和破坏准则的试验研究[J]. 水利学报, 2006, 37(8): 932-937. doi: 10.3321/j.issn:0559-9350.2006.08.006SONG Yu-pu, CHEN Fei, ZHANG Zhong, et al. Strength reduction of air-entrained concrete under biaxiai tension-com-pression after freeze-thaw cycles and its failure criterion[J]. Journal of Hydraulic Engineering, 2006, 37(8): 932-937. (in Chinese) doi: 10.3321/j.issn:0559-9350.2006.08.006 [4] 慕儒. 冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D]. 南京: 东南大学, 2000.MU Ru. Durability and servicelife prediction of concrete sub-jected to the combined action of freezing-thawing, sustainedexternal flexural stress and salt solution[D]. Nanjing: Southeast University, 2000. (in Chinese) [5] 段安, 钱稼茹. 受冻融环境混凝土的应力-应变全曲线试验研究[J]. 混凝土, 2008(8): 13-16. doi: 10.3969/j.issn.1002-3550.2008.08.005DUAN An, QI AN Jia-ru. Experimental study on complete compressive stress-strain curve of concrete subjected to freeze-thaw cycles[J]. Concrete, 2008(8): 13-16. (in Chinese) doi: 10.3969/j.issn.1002-3550.2008.08.005 [6] 慕儒, 缪昌文, 刘加平, 等. 氯化钠、硫酸钠溶液对混凝土抗冻性的影响及其机理[J]. 硅酸盐学报, 2001, 29(6): 523-529. doi: 10.3321/j.issn:0454-5648.2001.06.004MU Ru, LI AO Chang-wen, LI U Jia-ping, et al. Effect of NaCl and Na2SO4 solution on the frost resistance of concrete andits mechanism[J]. Journal of the Chinese Ceramic Society, 2001, 29(6): 523-529. (in Chinese) doi: 10.3321/j.issn:0454-5648.2001.06.004 [7] POPOVICS S. A review of stress-strain relationships for concrete[J]. Journal Proceedings, 1970, 67(3): 243-248. [8] 邹超英, 赵娟, 梁锋, 等. 冻融作用后混凝土力学性能的衰减规律[J]. 建筑结构学报, 2008, 29(1): 117-123, 138. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200801017.htmZOU Chao-ying, ZHAOJuan, LI ANG Feng, et al. Degrad-ation of mechanical properties of concrete caused by freeze-thaw action[J]. Journal of Building Structures, 2008, 29(1): 117-123, 138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200801017.htm [9] 吴建营, 李杰. 混凝土弹塑性损伤本构关系统一模型[J]. 建筑科学与工程学报, 2005, 22(4): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG200504003.htmWUJian-ying, LI Jie. Unified elasto-plastic damage constitu-tive relations model for concrete[J]. Journal of Architecture and Civil Engineering, 2005, 22(4): 15-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG200504003.htm [10] 孙洋, 刁波. 混合侵蚀与冻融环境下混凝土力学性能劣化试验[J]. 建筑科学与工程学报, 2008, 25(2): 41-44, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG200802009.htmSUN Yang, DI AO Bo. Experiment of mechanical properties deterioration of concrete in multi-aggressive and freeze-thaw environment[J]. Journal of Architecture and Civil Engineering, 2008, 25(2): 41-44, 50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG200802009.htm [11] GBJ82—85, 普通混凝土长期性能和耐久性能试验方法[S].GBJ82—85, standard for test methods of long-term perfor-mance and durability of ordinary concrete[S]. (in Chinese) -