Topology optimization simulation of framework for high-speed locomotive
-
摘要: 为了获得高速机车构架最优轻量化的结构方案, 基于渐进结构优化法(ESO), 应用ANSYS单元生死功能的二次开发, 设定一应力阀值, 将相对低应力或低应变能密度的单元“杀死”, 通过APDL语言编制拓扑优化程序, 对某高速动力车辆转向架构架内部筋板位置进行了拓扑优化仿真, 提出了构架梁体内部筋板的最优拓扑位置, 并对构架的板厚进行了尺寸优化。仿真结果表明: 构架前后端梁应力优化后增加了30%左右, 侧梁应力优化后增加了10%左右, 构架整体应力分布更趋于均匀; 通过对构架结构的拓扑及尺寸优化, 构架质量减轻了143.92kg, 减幅约为10%, 在实现等强度设计的同时, 达到了构架轻量化的目的。Abstract: In order to obtain the most superior lightweight locomotive frame structure, based on ESO (evolutionary structural optimization), the ANSYS's birth and death of element function redevelopment were applied, the element with relatively low stress or low strain energy density was "killed" by setting a stress threshold, and the topology optimization procedure was established by APDL.The interior ribbed plate position of bogie frame for high-speed power vehicle was simulated by ESO, the optimal topological location of the interior ribbed plate was determined, and the thickness of the plate was optimized.The result shows that the stress of the end beam in bogie frame increases by about 30%, the stress of the lateral beam in bogie frame increases by about 10% after the structure is optimized, and the overall stress distribution of the frame tends even.Through framework topology and size optimization, the mass of bogie frame reduces by 143.92 kg, and the reducing rate is about 10%, so the lightweight purpose of bogie frame achieves based on the uniform strength design of bogie frame.
-
Key words:
- high-speed locomotive /
- bogie frame /
- topology optimization /
- birth and death of element /
- APDL language
-
表 1 尺寸优化结果
Table 1. Result of size optimization
mm 序号 物理意义 初值 下限值 上限值 优化结果 1 侧梁上盖板 10 6 16 8 2 侧梁内、外立板 8 6 12 7 3 侧梁立板加强板 12 8 18 9 4 侧梁筋板 6 5 10 5 5 前端梁上盖板 8 5 12 6 6 前端梁下盖板 10 6 16 6 7 前端梁内、外立板 8 6 12 9 8 前端梁吊装孔立板 6 5 10 5 9 牵引后端梁上盖板 10 6 16 9 10 牵引后端梁牵引处下盖板 24 18 30 22 11 牵引后端梁非牵引处下盖板 14 10 20 10 12 牵引后端梁内、外立板 8 5 12 6 13 牵引后端梁筋板 6 5 10 8 14 侧梁下盖板 10 6 16 14 表 2 优化前、后各参数对比
Table 2. Comparison of each parameter values before and after optimization
参数 左侧梁的σmax/MPa 右侧梁的σmax/MPa 牵引后端梁的σmax/MPa 前端梁的σmax/MPa 构架总质量/kg 优化前 176.50 189.06 101.29 64.53 1 387.89 优化后 199.18 202.62 129.74 85.27 1 243.97 变化值 22.68 13.56 28.45 20.74 -143.92 变化率/% 12.85 7.17 28.09 32.14 -10.37 -
[1] 肖辉, 郭振邦, 李达. 进化算法在船体结构优化设计中的应用[J]. 天津理工大学学报, 2006, 22 (2): 74-76. doi: 10.3969/j.issn.1673-095X.2006.02.020XI AO Hui, GUO Zhen-bang, LI Da. Application of evolu-tionary algorithmin the optimal design of ship structure[J]. Journal of Tianjin University of Technology, 2006, 22 (2): 74-76. (in Chinese) doi: 10.3969/j.issn.1673-095X.2006.02.020 [2] 李湘宁, 余传文, 赵旗. 应用ANSYS进行汽车车架结构优化设计的探讨[J]. 沈阳航空工业学院学报, 2006, 23 (3): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGX200603006.htmLI Xiang-ning, YU Chuan-wen, ZHAO Qi. Automobile frame structure optimization design based on ANSYS[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2006, 23 (3): 20-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKGX200603006.htm [3] YANG RJ, CHUANG C H. Optimal topology design using linear programming[J]. Computers and Structures, 1994, 52 (2): 265-275. [4] BENDSOE M P, KIKUCHI N. Generating optimal top-ologiesin structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71 (2): 197-224. doi: 10.1016/0045-7825(88)90086-2 [5] ALLAIRE G, AUBRY S. On optimal microstructures for a plane shape optimization problem[J]. Structural Optimiza-tion, 1999, 17 (2): 86-94. doi: 10.1007/s001580050040 [6] XIE Y M, STEVEN G P. A simple evolutionary procedure for structural optimization[J]. Computers and Structures, 1993, 49 (5): 885-896. [7] 荣见华, 姜节胜, 颜东煌, 等. 基于人工材料的结构拓扑渐进优化设计[J]. 工程力学, 2004, 21 (5): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200405017.htmRONGJian-hua, JI ANGJie-sheng, YAN Dong-huang, et al. Evolutionary optimization design of structural topology based on man-made material[J]. Engineering Mechanics, 2004, 21 (5): 64-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200405017.htm [8] 谢亿民, 杨晓英, STEVEN G P, 等. 渐进结构优化法的基本理论及应用[J]. 工程力学, 1999, 16 (6): 70-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX199906008.htmXIE Yi-min, YANG Xiao-ying, STEVEN G P, et al. The theory and application of evolutionary structural optimization method[J]. Engineering Mechanics, 1999, 16 (6): 70-81.(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX199906008.htm [9] BENDSOE MP. Optimization of Structural Topology Shape and Material[M]. Berlin: Springer-Verlag, 1995. [10] SIGMUND O, PETERSSON J. Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima[J]. Structural Optimization, 1998, 16 (1): 68-75. [11] HABER R B, JOG C S, BENDSOE MP. A new approach to variable-topologyshape design usinga constraint on perimeter[J]. Structural Optimization, 1996, 11 (1): 1-12. -