Vibration test method of semi-rigid base course material
-
摘要: 以最大程度地模拟现场碾压工况和效果为原则, 测试了室内外振动压实后的水泥稳定碎石干密度和级配, 研究了振动仪的振动参数对半刚性基层材料压实的影响, 提出半刚性基层材料振动试验方法。发现工作频率为30 Hz, 激振力为7.6 kN, 名义振幅为1.2 mm和工作质量为300 kg时振动效果最佳, 振动100 s时的最大干密度与现场干密度相等; 运用振动试验方法确定的最大干密度的准确度平均为100.0%, 振动法成型试件7 d无侧限抗压强度准确度平均为112.6%, 而重型击实试验方法的准确度平均为96.9%, 静压法成型试件7 d无侧限抗压强度准确度平均为42.9%。分析结果表明: 振动试验方法能够更好地模拟基层实际碾压效果, 成型的试件能真实地反映基层材料实际性能。Abstract: Based on simulating the on-the-spot rolling working condition and impact of semi-rigid base course to maximal extent, the dry density and gradation of semi-rigid base course material were tested, the influence of vibration parameters on the compacting effect of semi-rigid base course material was studied, and a vibration test method of semi-rigid base course material was put forward. It is pointed that the optimum vibration parameters of vibration compaction test machine are vibration frequency at 30 Hz, excitation force at 7.6 kN, nominal vibration amplitude at 1.2 mm and vibrator mass at 300 kg, and the maximum dry density by 100 s vibration compaction is equal to the on-the-spot one. On the basis, the average accuracy of the maximum dry density and the average unconfined compressive strength by the method are 100.0% and 112.6%respectively, and they are 96. 9% and 42. 9% respectively by standard heavy compaction test and static compaction test. The result indicates that real base structure can be simulated accurately by the method, and the specimens produced by the method can represent the component structure and performance of on-site semi-rigid base.
-
表 1 骨架密实型级配
Table 1. Graded compositions of dense framework structure
表 2 合理振动参数
Table 2. Optimum vibration parameters
表 3 振动时间与压实度关系
Table 3. Relation between vibration times and compactnesses
表 4 成型方法对试件级配的影响
Table 4. Influence of methods of forming sample on gradations of aggregate
表 5 最大干密度测试结果的准确度
Table 5. Test accuracies of maximum dry densities
表 6 无侧限抗压强度测试结果的准确度
Table 6. Test accuracies of unconfined compressive strengthes
-
[1] 蒋应军. 水泥稳定碎石振动试验方法及工程应用研究[D]. 南京: 东南大学, 2009.JIANG Ying-jun. Study on vibration test methods for cement stabilization of crushd aggregate[D]. Nanjing: Southeast University, 2009. (in Chinese) [2] 李美江. 道路材料振动压实特性研究[D]. 西安: 长安大学, 2002.LI Mei-jiang. Study on compacting performance of road material[D]. Xi'an: Chang'an University, 2002. (in Chinese) [3] 沙爱民, 胡力群. 半刚性基层材料的结构特征[J]. 中国公路学报, 2008, 21(4): 1-5, 42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200804000.htmSHA Ai-min, HU Li-qun. Structural characteristics of semirigid base course material[J]. China Journal of Highway and Transport, 2008, 21(4): 1-5, 42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200804000.htm [4] 周卫峰, 赵可, 王德群, 等. 水泥稳定碎石混合料配合比的优化[J]. 长安大学学报: 自然科学版, 2006, 26(1): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200601005.htmZHOU Wei-feng, ZHAO Ke, WANG De-qun, et al. Mix ratio optimization design of cement stabilized macadam based on static pressure method and vibration method[J]. Journal of Chang'an University: Natural Science Edition, 2006, 26(1): 24-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200601005.htm [5] 李炜光, 申爱琴, 张玉斌. 二灰砂砾振动压实参数[J]. 长安大学学报: 自然科学版, 2007, 27(4): 10-13. doi: 10.3321/j.issn:1671-8879.2007.04.003LI Wei-guang, SHEN Ai-qin, ZHANG Yu-bin. Vibratingcompaction parameters of lime-fly-ash sand-gravel[J]. Journal of Chang'an University: Natural Science Edition, 2007, 27(4): 10-13. (in Chinese) doi: 10.3321/j.issn:1671-8879.2007.04.003 [6] 沙爱民, 贾侃, 李小刚. 半刚性基层材料的疲劳特性[J]. 交通运输工程学报, 2009, 9(3): 29-33. doi: 10.3321/j.issn:1671-1637.2009.03.005SHA Ai-min, JIA Kan, LI Xiao-gan. Fatigue performances of semi-rigid base course materials[J]. Journal of Traffic and Transportation Engineering, 2009, 9(3): 29-33. (in Chinese) doi: 10.3321/j.issn:1671-1637.2009.03.005 [7] 蒋应军. 基于振动试验法设计的抗裂型水泥稳定碎石基层应用研究[J]. 公路, 2008(12): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200812010.htmJIANG Ying-jun. Application research of cement stabilized crushed stone base course based on vibration design method[J]. Highway, 2008(12): 36-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200812010.htm [8] 蒋应军, 王富玉, 刘斌. 水泥稳定碎石强度特性的试验研究[J]. 武汉理工大学学报, 2009, 31(15): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200915014.htmJIANG Ying-jun, WANG Fu-yu, LIU Bin. Research on strength properties of cement stabilization of crushed aggregate[J]. Journal of Wuhan University of Technology, 2009, 31(15): 52-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200915014.htm [9] 张鹏, 李清富, 黄承逵. 聚丙烯纤维水泥稳定碎石收缩性能[J]. 交通运输工程学报, 2008, 8(4): 30-34. http://transport.chd.edu.cn/article/id/200804007ZHANG Peng, LI Qing-fu, HUANG Cheng-kui. Shrinkage properties of cement stabilized macadam reinforced with polypropylene fiber[J]. Journal of Traffic and Transportation Engineering, 2008, 8(4): 30-34. (in Chinese) http://transport.chd.edu.cn/article/id/200804007 [10] 杨红辉, 唐娴, 郝培文, 等. 半刚性基层材料抗裂性评价方法[J]. 长安大学学报: 自然科学版, 2002, 22(4): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200204003.htmYANG Hong-hui, TANG Xian, HAO Pei-wen, et al. Evaluation method for anti-cracking performance of semi-rigid base course[J]. Journal of Chang'an University: Natural Science Edition, 2002, 22(4): 13-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200204003.htm [11] 蒋应军, 张毅, 刘海鹏, 等. 基于振动法设计的水泥稳定碎石施工质量控制[J]. 筑路机械与施工机械化, 2008, 25(10): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX200810030.htmJIANG Ying-jun, ZHANG Yi, LIU Hai-peng, et al. Construction quality control of cement stabilized crushed stone designed based on vibration method[J]. Road Machinery and Construction Mechanization, 2008, 25(10): 47-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX200810030.htm [12] 马银华, 易志坚, 杨庆国. PP纤维水稳碎石抗弯韧性及疲劳性能试验研究[J]. 重庆建筑大学学报, 2008, 30(1): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN200801013.htmMA Yin-hua, YI Zhi-jian, YANG Qing-guo. Experimental study on flexural toughness and fatigue property of polypropylene(PP) fiber reinforced cement-stabilized macadam[J]. Journal of Chongqing Jianzhu University, 2008, 30(1): 58-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN200801013.htm [13] 张鹏, 李清富. 聚丙烯纤维水泥稳定碎石抗拉强度试验研究[J]. 公路, 2008(4): 175-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200804041.htmZHANG Peng, LI Qing-fu. Experiment and study on tensile strength of polypropylene fiber reinforced cement stabilized macadam[J]. Highway, 2008(4): 175-179. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200804041.htm [14] 霍轶珍, 黄晓明. 微膨胀水泥稳定碎石在高等级公路基层中的应用技术研究[J]. 内蒙古农业大学学报: 自然科学版, 2009, 30(1): 163-169. https://www.cnki.com.cn/Article/CJFDTOTAL-NMGM200901035.htmHUO Yi-zhen, HUANG Xiao-ming. Application of microexpansion cement stabilized base materialin expressway bases[J]. Journal of Inner Mongolia Agricultural University: Natural Science Edition, 2009, 30(1): 163-169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NMGM200901035.htm [15] 李淑明, 许志鸿. 水泥稳定碎石基层的最低劈裂强度和抗压强度[J]. 建筑材料学报, 2007, 10(2): 177-182. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200702008.htmLI Shu-ming, XUZhi-hong. Minimum splitting and compressive strength of cement-treated aggregate[J]. Journal of Building Materials, 2007, 10(2): 177-182. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200702008.htm [16] 孟庆营, 周卫峰, 赵可. 水泥稳定碎石混合料静压法与振动法成型工艺的比较研究[J]. 公路交通科技, 2007, 24(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200701005.htmMENG Qing-ying, ZHOU Wei-feng, ZHAO Ke. Study and comparison of cement-stabilized aggregate mixture with static pressure method and vibration method[J]. Journal of Highway and Transportation Research and Development, 2007, 24(1): 21-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200701005.htm -