Influence factors of bond performance between asphalt surface layer and semi-rigid base
-
摘要: 借鉴国外LPDS剪切试验方法, 通过自行设计的室内直剪试验和斜剪试验, 以剪切强度和单位剪切强度(剪切强度与破坏变形的商) 作为评价指标, 研究了沥青混合料、粘层材料、半刚性基层材料、沥青混合料与粘层材料的界面、粘层材料与半刚性基层的界面对沥青面层和半刚性基层之间抗剪切强度的影响。分析结果表明: 提高沥青混合料公称最大粒径和压实度将有利于增强层间粘结性; 高强度、粗糙、密实型的半刚性材料也将有效改善基层与沥青面层的粘结性; 粘度不是选择粘层材料的主要因素, 应结合工程实际, 通过试验选择粘层材料的品种与剂量; 基层表面清理是提高层间粘结性的重要措施, 透层油应在基层清理后撒布, 剂量宜为0.3~0.6 L·m-2; 在层间热沥青上撒布一定的单一粒径, 较粗规格, 且与沥青粘附性较好的碱性碎石不仅具有工程意义, 对提高层间粘结水平也有较明显作用。Abstract: Referring to foreign LPDS shear test method, the influence of asphalt mixture, sticky layer material, semi-rigid base material, the interface of asphalt mixture and sticky layer material, the interface of viscous layer material and semi-rigid base on the shear strength between asphalt surface layer and semi-rigid base was studied with self-designed interior direct shear test and oblique shear test.The shear strength and the unit shear strength were the test evaluation indexes. It is shown that increasing the maximum nominal size and the compactness of asphalt mixture can improve interlayer bond strength. High strength, coarse and dense semi-rigid material can improve interlayer bond strength. Viscosity isn't main influence factor to select viscous layer materials, but the species and doses of viscous layer materials should be selected according to engineering practice test.Cleaning the surface of semi-rigid base is an important measure to improve bond interlayer's level.Prime coat should be sprinkled with 0.3~0.6 L·m-2 after the surface of semi-rigid base is cleaned. Casting single particle size, coarse specification and alkaline crushed stone above interlayer hot asphalt is easy to construct, and can improve interlayer bond strength.
-
表 1 粒径对抗剪强度的影响
Table 1. Influence of particle size on shear strength
混合料级配 AC10 SAC10 SAC16 SAC20 直剪强度/MPa 0.464 0.489 0.482 0.534 斜剪强度/MPa 1.556 1.516 1.601 1.656 斜剪40 ℃强度/MPa 0.756 0.688 0.824 0.804 斜剪与直剪强度之比 3.35 3.10 3.32 3.10 表 2 水泥稳定碎石的6种不同级配
Table 2. Six gradations of CSCS
级配 筛孔(mm) 通过率/% 31.5 19 9.5 4.75 2.36 0.6 0.075 Z 100.0 85.9 47.7 25.5 15.5 9.0 2.1 Y 100.0 88.0 52.7 30.3 19.2 11.1 2.6 X 100.0 90.2 57.7 35.2 22.8 13.2 3.2 W 100.0 92.3 62.7 40.0 26.4 15.3 3.7 V 100.0 94.4 67.6 44.8 30.1 17.4 4.2 U 100.0 96.6 72.6 49.6 33.7 19.5 4.7 表 3 水泥稳定碎石的击实试验结果
Table 3. Hitting compaction test result of CSCS
级配 U V W X Y Z 最佳含水量/% 5.89 5.43 5.53 5.30 5.62 6.05 最大干密度/ (g·cm-3) 2.313 5 2.328 3 2.347 2 2.347 7 2.334 5 2.313 9 表 4 水泥稳定碎石的强度
Table 4. Strengths of CSCS
试验类型 级配 U V W X Y Z 无侧限抗压强度 平均值/MPa 4.38 4.32 4.88 4.50 4.05 3.22 变异系数/% 7.79 4.16 7.08 8.48 12.36 5.79 代表值/MPa 3.82 4.02 4.31 3.87 3.23 2.91 中梁弯曲强度 平均值/MPa 0.47 0.47 0.54 0.57 0.53 0.47 变异系数/% 9.39 12.80 13.44 10.86 11.86 13.51 代表值/MPa 0.40 0.37 0.42 0.46 0.43 0.37 表 5 水泥稳定碎石级配表面的构造深度
Table 5. Surface texture depths of CSCS
mm 级配 U V W X Y Z 构造深度 0.115 0.125 0.170 0.172 0.227 0.248 表 6 不同粘层材料时的层间抗剪强度
Table 6. Shear strengths with different viscous layer materials
MPa 粘结层 4%水泥 6%水泥 8%水泥 改性沥青 0.241 0.247 0.389 乳化沥青 0.181 0.225 0.302 表 7 不同撒布剂量时的斜剪强度
Table 7. Oblique shear strengths with different doses
MPa 撒布剂量/ (kg·m-2) 0.5 1.0 1.5 2.0 2.5 3.0 橡胶粉掺量/% 25 0.724 0.797 0.723 0.861 0.811 20 1.055 0.841 0.913 0.921 0.868 15 1.283 1.340 1.050 0.992 1.099 10 1.321 1.239 1.251 1.133 1.288 5 1.359 1.623 1.396 1.423 1.347 0 1.306 1.192 1.079 1.053 0.974 表 8 不同沥青直剪试验、粘度试验、粘韧性试验结果
Table 8. Results of direct shear test, viscosity test, toughness and tenacity test of viscous layer asphalts
沥青品种 直剪试验 粘度试验 粘韧性试验 剪切强度/MPa 单位剪切强度/ (MPa·mm-1) 135 ℃的粘度/ (Pa·s) 180 ℃的粘度/ (Pa·s) 最大拉力/N 粘性/ (N·mm) 粘韧性/ (N·mm) 硬沥青 0.692 0.289 3.24 2.34 933.8 2 481.0 2 047.0 高粘度沥青 0.530 0.250 3.73 2.99 472.3 18 128.0 28 578.0 SBS 0.459 0.268 3.72 2.58 112.0 2 205.2 8 305.4 STRA 0.397 0.206 106.7 1 160.4 10 988.0 90# 0.645 0.215 2.63 85.2 937.6 1 310.8 90#+10%120 0.600 0.232 3.15 2.43 189.7 1 327.2 4 860.0 90#+15%120 0.557 0.198 3.05 2.41 90#+20%120 0.465 0.255 4.02 3.40 211.4 1 775.0 7 711.3 90#+25%120 0.527 0.204 4.41 3.76 157.8 1 722.4 6 788.3 70#+20%40 0.509 0.273 3.68 3.01 281.8 2 514.8 8 887.0 表 9 剪切强度与粘韧性和粘度试验指标的相关性
Table 9. Relationship between shear strength and viscosity, toughness and tenacity
试验指标 最大拉力 粘性 韧性 粘韧性 粘度 剪切强度 -0.283 0.475 -0.322 0.256 -0.038 表 10 不同规格、不同撒布量碎石平台斜剪试验结果
Table 10. Oblique shear test result with different single particle sizes and casting volumes of crushed stones
撒布量/ (kg·m-2) 不同粒径(mm) 下的抗剪强度/MPa 4.75~9.5 9.5~13.2 13.2~16 16~19 10 1.890 1.936 2.047 1.549 12 2.041 1.984 2.295 1.719 14 1.630 表 11 不同基层界面下直剪试验结果
Table 11. Direct shear test result with different base surfaces
界面条件 统计参数 剪切强度/MPa 单位剪切强度/ (MPa·mm-1) 干燥 饱水 干燥 饱水 刷表面 平均值 0.494 0.485 0.216 0.211 变异系数/% 2.21 5.64 2.23 7.65 代表值 0.476 0.440 0.208 0.185 不刷表面 平均值 0.437 0.443 0.208 0.185 变异系数/% 8.36 2.72 10.46 13.29 代表值 0.377 0.423 0.172 0.145 提高率/% 26.3 4.0 20.9 27.6 表 12 水泥稳定材料的渗透效果
Table 12. Penetration effect of cement stabilized crushed stone
透层油种类 电荷 残留物含量/% 没有养生 养生7 d 渗透厚度/mm 渗透状态 渗透厚度/mm 渗透状态 高渗透乳化沥青 + 42.0 6.5 Ⅲ 4.0 Ⅲ 普通乳化沥青 + 40.8 0.2 Ⅰ 0.0 Ⅰ 表 13 二灰稳定材料的渗透效果
Table 13. Penetration effect of fly-ash and lime stabilized crushed stone
透层油种类 电荷 残留物含量/% 没有养生 养生7 d 渗透厚度/mm 渗透状态 渗透厚度/mm 渗透状态 高渗透乳化沥青 + 42.0 3.3 Ⅲ 0.0 Ⅰ 普通乳化沥青 + 40.8 0.0 Ⅰ 0.0 Ⅰ 稀释沥青 40.0 30.0 Ⅳ 0.0 Ⅰ 表 14 透层油不同撒布时机对层间抗剪强度的影响
Table 14. Interlayer shear strengths at different sprinkle times of prime coats
MPa 撒布方式 粘层材料 干燥 饱水 7 d后撒布透层油 改性沥青 0.305 0.206 乳化沥青 0.195 0.122 成型后撒布透层油 改性沥青 0.275 0.204 乳化沥青 0.236 0.108 表 15 不同透层材料对层间粘结效果的影响
Table 15. Influence of different prime coats on interlayer bond effect
配比 撒布量/ (L·m-2) 0 0.3 0.6 0.9 1.2 剪应力/MPa 5∶5 0.554 0.411 0.317 0.286 0.292 6∶4 0.464 0.433 0.406 0.383 7∶3 0.497 0.459 0.450 0.409 平均值 0.457 0.403 0.381 0.361 配比 单位剪应力/ (MPa·mm-1) 5∶5 0.281 0.240 0.138 0.113 0.110 6∶4 0.251 0.234 0.202 0.184 7∶3 0.214 0.178 0.190 0.189 平均值 0.235 0.183 0.168 0.161 -
[1] CANESTRARI F, FERROTTI G, PARTL M N, et al. Repeatability of interlayer shear resistance determined with two test procedures[R]. Ancona: Istitutodi Idraulicae Infrastrutture Viarie-UniversitàPolitecnica Delle Marche, 2005. [2] SANTAGATA F A, FERROTTI G, PARTL M N, et al. Statistical investigation of two different interlayer shear test methods[J]. Materials and Structures, 2009, 42 (6): 705-714. doi: 10.1617/s11527-008-9414-6 [3] VACI N O, PONNI AHJ, TIGHE S. Quantifying the shear strength at the asphalt interface[R]. Ontario: University of Waterloo, 2006. [4] ELSEIFI M A. Performance quantification of interlayer systems in flexible pavements using finite element analysis, instrument response, and non destructive testing[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2003. [5] 关昌余, 王哲人, 郭大智. 路面结构层间结合状态的研究[J]. 中国公路学报, 1989, 2 (1): 70-80. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL198901007.htmGUAN Chang-yu, WANG Zhe-ren, GUO Da-zhi. Astudy of contact conditions of interfaces in pavement layers[J]. China Journal of Highway and Transport, 1989, 2 (1): 70-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL198901007.htm [6] 薛亮, 张维刚, 梁鸿颉. 考虑层间不同状态的沥青路面力学响应分析[J]. 沈阳建筑大学学报: 自然科学版, 2006, 22 (4): 575-578. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ202102015.htmXUE Liang, ZHANG Wei-gang, LI ANG Hong-jie. The mechanical response analysis of asphalt pavement in different interface condition between layers[J]. Journal of Shenyang Jianzhu University: Natural Science, 2006, 22 (4): 575-578. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ202102015.htm [7] 艾长发, 邱延峻, 毛成, 等. 考虑层间状态的沥青路面温度与荷载耦合行为分析[J]. 土木工程学报, 2007, 40 (12): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200712019.htmAI Chang-fa, QI U Yan-jun, MAO Cheng, et al. Simulation of the temperature and load coupling effect on asphalt pavement considering inter-layer conditions[J]. China Civil Engineering Journal, 2007, 40 (12): 99-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200712019.htm [8] 杨育生, 李振霞, 王选仓, 等. 桥面铺装同步碎石防水粘结层的路用性能[J]. 长安大学学报: 自然科学版, 2009, 29 (6): 19-23, 58. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200906006.htmYANG Yu-sheng, LI Zhen-xia, WANG Xuan-cang, et al. Road performance of synchronous crushed stone waterproof binding course of bridge pavement[J]. Journal of Chang'an University: Natural Science Edition, 2009, 29 (6): 19-23, 58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200906006.htm [9] 顾兴宇, 马翔, 倪富健. CRCP板与沥青混凝土面层间粘结层材料试验研究[J]. 公路交通科技, 2005, 22 (6): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200506004.htmGU Xing-yu, MA Xiang, NI Fu-jian. Study on tack coat interface layer test for CRCPslab and ACsurface[J]. Journal of Highway and Transportation Research and Development, 2005, 22 (6): 14-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200506004.htm [10] 高金岐, 罗晓辉, 徐世法, 等. 沥青粘结层抗剪强度试验分析[J]. 北京建筑工程学院学报, 2003, 19 (1): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-BJJZ200301015.htmGAO Jin-qi, LUO Xiao-hui, XU Shi-fa, et al. Test and analysis of shearing strength of bituminous membrane[J]. Journal of Beijing Institute of Civil Engineering and Architecture, 2003, 19 (1): 66-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJJZ200301015.htm -