Vibration characteristic of coupled system for straddle type monorail beam and train
-
摘要: 将列车的每节车厢简化为15自由度的动力系统, 由拉格朗日方程导出其振动微分方程, 将轨道梁简化为欧拉梁, 基于能量法和车辆与轨道梁位移协调条件, 建立了车辆和轨道梁耦合运动控制方程, 研究了跨座式单轨交通轨道梁的动力特性。计算了列车以不同车速通过时轨道梁的动力响应, 并比较了计算结果与实测结果。比较结果表明: 理论计算结果与实测结果基本吻合, 车速对轨道梁挠度的影响较小, 但对加速度影响较大, 加速度随车速增大而增大, 在40~50 km·h-1处出现最大值, 之后随车速增大反而减小; 轮胎模型与轨道表面不平度功率谱密度函数对轨道梁横向响应计算结果影响较大, 使计算误差增大。
-
关键词:
- 城市轨道交通 /
- 跨座式单轨交通 /
- 列车-轨道梁耦合系统 /
- 动力响应
Abstract: Each car of monorail train was idealized as a dynamic system with 15 degrees of freedom and its differential equations were derived by using Lagrange formulation. Track beam was idealized as Euler beam.The governing equations of motion for the coupled system of straddle type monorail beam and train were derived based on the energy method and the concert conditions of the displacements between train and monorail beam. The dynamic responses of the coupled system was studied. The calculated result of dynamic response of monorail beam was compared with the test data at different speeds. The result shows that the effect of train speed on the deflections of beam are less than the effect on the acceleration. The acceleration increases with the increase of train speed and reaches the highest value at 40~50 km·h-1, then decreases with the increase of train speed. Tire model and the beam's surface roughness power spectral density function have greater effect on the calculated result of the lateral responses, and make computation error increase. -
表 1 符号
Table 1. Nomenclatures
符号 符号意义 k1ijlk/ c1ijlk 空气弹簧竖向刚度/阻尼 k2ijlk/ c2ijlk 走行轮径向刚度/阻尼 k3ijlk/ c3ijlk 导向轮径向刚度/阻尼 k4ijk/ c4ijk 稳定轮径向刚度/阻尼 k5ij/ c5ij 空气弹簧横向刚度/阻尼 2dw 走行轮横向距离 2ds 二系悬挂横向距离 2Lc 车辆定距 2Lg 两导向轮轴距 2Lw 两走行轮轴距 h1i 车体质心至空气弹簧上平面垂向距离 h2i 空气弹簧下平面至构架质心垂向距离 hgi 导向轮至构架质心垂向距离 hsi 稳定轮至构架质心垂向距离 hgc 导向轮至梁体截面质心垂向距离 hsc 稳定轮至梁体截面质心垂向距离 ht 转向架至走行轮轨道面垂向距离 hr 转向架至走行轮轮心垂向距离 hwc 走行轮轨道面至梁体截面质心垂向距离 表 2 计算模型主要计算参数
Table 2. Main Parameters of calculation model
计算模型参数 数值 车体质量/kg 14 220 转向架质量/kg 6 200 空气弹簧竖向刚度/ (kN·m-1) 900 空气弹簧横向刚度/ (kN·m-1) 980 走行轮刚度/ (kN·m-1) 5 170 导向轮/稳定轮刚度/ (kN·m-1) 6 370 空气弹簧竖向阻尼/ (kN·s·m-1) 22.8 空气弹簧横向阻尼/ (kN·s·m-1) 333.6 走行轮阻尼/ (kN·s·m-1) 26.1 导向轮/稳定轮阻尼/ (kN·s·m-1) 185.5 车辆定距/m 9.6 走行轮轴距/m 1.5 导向轮轴距/m 2.5 表 3 表面不平度参数
Table 3. Parameters of surface roughnesses
位置 参数 走行轮轨道 α=0.000 5, β=0.35, γ=3.0 导向轮轨道 α=0.000 6, β=0.50, γ=2.8 稳定轮轨道 α=0.000 6, β=0.50, γ=2.6 -
[1] LEE C H, KAWATANI M, KI M C W, et al. Dynamic response of a monorail steel bridge under a moving train[J]. Journal of Sound and Vibration, 2006, 294 (3): 562-579. doi: 10.1016/j.jsv.2005.12.028 [2] LEE C H, KI M C W, KAWATANI M, et al. Dynamic response analysis of monorail bridges under moving trains and riding comfort of trains[J]. Engineering Structures, 2005, 27 (14): 1999-2013. doi: 10.1016/j.engstruct.2005.06.014 [3] KI M C W, KAWATANI M, LEE C H, et al. Seismic response of a monorail bridge incorporating train-bridge interaction[J]. Structural Engineering and Mechanics, 2007, 26 (2): 111-126. doi: 10.12989/sem.2007.26.2.111 [4] 任利惠, 周劲松, 沈钢. 跨坐式独轨车辆动力学模型及仿真[J]. 中国铁道科学, 2004, 25 (5): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200405005.htmREN Li-hui, ZHOUJin-song, SHEN Gang. Dynamics model and simulation study of a straddle type monorail car[J]. China Railway Science, 2004, 25 (5): 26-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200405005.htm [5] 赵冬青, 王一功. 重庆市轻轨40 m跨长钢轨道梁桥有限元分析[J]. 河北建筑工程学院学报, 2004, 22 (2): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-HBJZ200402010.htmZHAO Dong-qing, WANG Yi-gong. The analysis of a steel bridge in Chongqing by ANSYS[J]. Journal of Hebei Institute of Architectural Engineering, 2004, 22 (2): 36-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBJZ200402010.htm [6] 张洪伟, 朱尔玉. 钢-混简支组合轨道梁动力特性研究[J]. 北京交通大学学报, 2006, 30 (增): 263-266. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-OPIU200612001049.htmZHANG Hong-wei, ZHU Er-yu. Study of dynamic behavior on steel-concrete composite simple-supported track beams[J]. Journal of Beijing Jiaotong University, 2006, 30 (S): 263-266. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-OPIU200612001049.htm [7] 施洲, 蒲黔辉, 高玉峰, 等. 重庆市跨座式单轨交通系统动力试验研究[J]. 振动与冲击, 2008, 27 (12): 101-106, 183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200812025.htmSHI Zhou, PU Qian-hui, GAO Yu-feng, et al. Dynamic testing of straddle-type monorail vehicles system in Chongqing City[J]. Journal of Vibration and Shock, 2008, 27 (12): 101-106, 183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200812025.htm [8] 马继兵, 蒲黔辉, 夏招广. 跨座式单轨交通系统车辆的乘坐舒适性性能测试与评定[J]. 都市快轨交通, 2006, 19 (6): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DSKG200606013.htmMAJi-bing, PU Qian-hui, XIA Zhao-guang. Test and evaluation of the comfort of passengersin straddle-type monorail vehicles[J]. Urban Rapid Rail Transit, 2006, 19 (6): 46-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DSKG200606013.htm [9] 许智国, 程祖国. ALWAG型跨座式独轨转向架分析[J]. 铁道车辆, 2000, 38 (增): 122-124. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL2000S1037.htmXU Zhi-guo, CHENG Zu-guo. The analysis of ALWAGstraddle type single-rail bogies[J]. Rolling Stock, 2000, 38 (S): 122-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL2000S1037.htm [10] 龙许友, 魏庆朝, 冯稚薇, 等. 轨道不平顺激励下直线电机车辆/轨道动力响应[J]. 交通运输工程学报, 2008, 8 (2): 9-13. http://transport.chd.edu.cn/article/id/200802003LONG Xu-you, WEI Qing-chao, FENG Ya-wei, et al. Dynamic response of linear metro vehicle/track excited by trackirregularity[J]. Journal of Traffic and Transportation Engineering, 2008, 8 (2): 9-13. (in Chinese) http://transport.chd.edu.cn/article/id/200802003 [11] 葛玉梅. 斜拉桥在考虑风效应时的车-桥耦合振动[D]. 成都: 西南交通大学, 2001.GE Yu-mei. Coupled vibration of train and cable-stayed bridge with consideration of the effect of wind[D]. Chengdu: Southwest Jiaotong University, 2001. (in Chinese) -