Parametric design of bogie frame for motive power units based on mechanical method
-
摘要: 基于结构力学中的力法原理, 对动车转向架构架结构几何尺寸进行参数化设计, 利用Microsoft Visual C++6.0实现程序化。根据构架设计的原始参数、UIC 615-4—2003标准规定的计算载荷和载荷工况及制造材料的许用应力, 确定构架的总体尺寸和不同截面的几何尺寸, 分析动车转向架构架在各个载荷工况下的最大名义应力。通过计算应力与许用应力的比较, 检查构架结构尺寸的合理性。计算结果表明: 在构架结构方案设计过程中, 根据UIC 615-4—2003和EN 13749—2005标准的规定, 载荷工况1~13的von-Mises应力小于制造材料16Mn的许用应力230 MPa, 载荷工况14的von-Mises应力小于制造材料16Mn的屈服极限345 MPa, 构架的静强度满足设计的要求, 因此, 应用参数化设计可以快速有效地确定构架的结构几何尺寸, 提高构架的设计效率。Abstract: The geometric sizes of bogie frame for motive power units were carried on by using the parametric design based on the mechanical method of structural mechanicst. The procedure was completed by Microsoft Visual C++6.0. According to the primitive parameters of the frame, the specified load and the load cases of the standard UIC 615-4—2003, the allowable stress of material, the overall sizes of the frame and the geometric sizes of different sections were educed, and the biggest nominal stresses of the frame under the load cases were analyzed. Through the comparison of calculational stresses and allowable stresses, the rationality of the frame's structural sizes was inspected. Calculation result indicates that in the design process of the frame, according to the standards UIC 615-4—2003 and EN 13749—2005, under load cases 1~13, the von-Mises stresses are less than 230 MPa, which is the allowable stress of 16Mn material. Under load case 14, the von-Mises stress is less than 345 MPa, which is the yield limit of 16Mn material.The static strength of the frame meets the design requirements.Obviously, the design effectively defines the frame's geometric sizes, and improves the frame's design efficiency.
-
Key words:
- motive power units /
- bogie frame /
- mechanical method /
- parametric design
-
表 1 各载荷工况下的应力集中系数
Table 1. Stress concentration factors under various loads
载荷工况 1 2 3 4 5 6 7 14 应力集中系数k 2.25 2.25 2.02 1.57 2.25 2.25 1.67 1.25 表 2 不同载荷工况、不同计算方法的von-Mises应力值比较
Table 2. Comparison of von-Mises equivalent stresses under different loads and different calculation methods
载荷工况 1 2 3 4 5 6 7 8 9 10 11 12 13 14 力法/MPa 110.80 109.32 136.70 190.60 153.64 196.58 202.07 109.32 136.70 190.60 153.64 196.58 202.07 317.24 有限元法/MPa 123.00 109.00 146.00 210.00 156.00 175.00 218.00 95.50 145.00 212.00 142.00 198.00 227.00 333.00 计算相对误差/% 9.92 0.30 6.37 9.24 1.51 10.98 7.31 12.64 5.72 10.09 7.58 0.72 10.98 4.73 -
[1] 严跃成, 申继红. 结构力学定性分析的研究与实践[J]. 高等建筑教育, 2008, 17 (4): 79-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JANE200804020.htmYAN Yue-cheng, SHEN Ji-hong. Research and practice to qualitative analysis of structure mechanics[J]. Journal of Architectural Education in Institutions of Higher Learning, 2008, 17 (4): 79-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JANE200804020.htm [2] 张志平, 朱世和, 郑清春, 等. 用VC++对Solid Works的二次开发[J]. 天津理工学院学报, 2003, 19 (4): 69-71. https://www.cnki.com.cn/Article/CJFDTOTAL-TEAR200304020.htmZHANG Zhi-ping, ZHU Shi-he, ZHENG Qing-chun, et al. The secondary development of Solid Works by VC++[J]. Journal of Tianjin Institute of Technology, 2003, 19 (4): 69-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TEAR200304020.htm [3] UIC CODE615-4—2003, motive power units-bogies and running gear-bogie frame structure strength tests[S]. [4] 安琪, 李芾. 结构模式对转向架构架扭转刚度的影响[J]. 交通运输工程学报, 2008, 8 (6): 1-5. http://transport.chd.edu.cn/article/id/200806001AN Qi, LI Fu. Influence of structure mode on distortion stiffness of bogie frame[J]. Journal of Traffic and Transportation Engineering, 2008, 8 (6): 1-5. (in Chinese) http://transport.chd.edu.cn/article/id/200806001 [5] 刘争平, 李刚. DF4机车转向架构架有限元分析[J]. 兰州交通大学学报, 2009, 28 (6): 87-90. https://www.cnki.com.cn/Article/CJFDTOTAL-LZTX200906021.htmLI U Zheng-ping, LI Gang. Finite element analysis of DF4 bogie frame[J]. Journal of Lanzhou Jiaotong University, 2009, 28 (6): 87-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LZTX200906021.htm [6] 程凯, 季有昌, 李文学, 等. 基于ANSYS的载轨客车转向架构架强度分析[J]. 中国制造业信息化, 2008, 37 (21): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZZ200821012.htmCHENG Kai, JI You-chang, LI Wen-xue, et al. The strength analysis of passenger train bogie frame based on ANSYS[J]. Manufacture Information Engineering of China, 2008, 37 (21): 40-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXZZ200821012.htm [7] GOMES C J, TROYANI N, MORILLO C, et al. Theoretical stress concentration factors for short flat tension bars with opposite U-shaped notches[J]. The Journal of Strain Analysis for Engineering Design, 2005, 40 (4): 345-355. [8] 董志航, 廖志忠. 理论应力集中系数的有限元求法[J]. 航空兵器, 2005 (3): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ200503006.htmDONG Zhi-hang, LI AO Zhi-zhong. Theoretical stress concentration factor with FEA[J]. Aero Weaponry, 2005 (3): 15-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ200503006.htm [9] 王钟羡, 王良国, 戴乐云. 确定应力集中系数的解析应变测量方法[J]. 南京理工大学学报, 2005, 29 (3): 312-315. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG200503017.htmWANG Zhong-xian, WANG Liang-guo, DAI Le-yun. Analytical strain measurement methodfor ascertaining stress concentration factor[J]. Journal of Nanjing University of Science and Technology, 2005, 29 (3): 312-315. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG200503017.htm [10] 航空工业部科学技术委员会. 应力集中系数手册[M]. 北京: 高等教育出版社, 1990.Committee of Aeronautics Industrial Ministry. Handbook of Stress Concentration Factor[M]. Beijing: Higher Education Press, 1990. (in Chinese) -